18.7 Boundary conditions
18.7.1 Elimination method
By matrix algebra: \[\begin{align} [K{\alpha\alpha}][Q_{\alpha}] + [K{\alpha\beta}][Q_{\beta}] =& [F_{\alpha}] \\ [K{\beta\alpha}][Q_{\alpha}] + [K{\beta\beta}][Q_{\beta}] =& [F_{\beta}] \\ \end{align}\]
Simple manipulation: \[\begin{align} K_{\alpha\alpha}\cdot q_{\alpha}=&\; F_{\alpha}-K_{\alpha\beta}\cdot q_{\beta} \\ F_{\beta}=&\; K_{\beta\alpha}\cdot q_{\alpha}+K_{\beta\beta}\cdot q_{\beta} \end{align}\]
18.7.2 Example: elimination method with symbols
\[\begin{bmatrix} k&-k&0\cr -k&2\,k&-k\cr 0&-k&k \end{bmatrix}\cdot \begin{bmatrix} q_{1}\cr q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} F_{1}\cr F_{2}\cr F_{3} \end{bmatrix}\]
Impose a dof \[q_{1}=a_{1}\]
Store the stiffness row where the load is imposed
\[K_{1}=\begin{bmatrix} k&-k&0 \end{bmatrix}\]
Store the column for modification of the force vector
\[\begin{bmatrix} -k\cr 0 \end{bmatrix}\]
Examine the reduced matrix \[K=\begin{bmatrix} 2\,k&-k\cr -k&k \end{bmatrix}\]
The matrix is invertible
Reduce the length of the force vector \[F=\begin{bmatrix} F_{2}\cr F_{3} \end{bmatrix}\]
Create a modification vector from the column of the stiffness matrix times the imposed dislacement vector
\[F_{q}=\begin{bmatrix} -a_{1}\,k\cr 0 \end{bmatrix}\]
Reduce the length of the displacement vector.
\[Q=\begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}\]
Modify the force vector.
\[F=F-F_q\]
\[F=\begin{bmatrix} a_{1}\,k+F_{2}\cr F_{3} \end{bmatrix}\]
The new problem is:
\[\begin{bmatrix} 2\,k&-k\cr -k&k \end{bmatrix}\cdot \begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} a_{1}\,k+F_{2}\cr F_{3} \end{bmatrix}\]
Invert and multiply.
\[\begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} \frac{1}{k}&\frac{1}{k}\cr \frac{1}{k}&\frac{2}{k} \end{bmatrix}\cdot \begin{bmatrix} a_{1}\,k+F_{2}\cr F_{3} \end{bmatrix}\]
\[\begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} \frac{a_{1}\,k+F_{2}}{k}+\frac{F_{3}}{k}\cr \frac{a_{1}\,k+F_{2}}{k}+\frac{2\,F_{3}}{k} \end{bmatrix}\]
Reassemble the displacement vector
\[Q=\begin{bmatrix} a_{1}\cr \frac{a_{1}\,k+F_{2}}{k}+\frac{F_{3}}{k}\cr \frac{a_{1}\,k+F_{2}}{k}+\frac{2\,F_{3}}{k} \end{bmatrix}\]
\[R_{1}=\begin{bmatrix} k&-k&0 \end{bmatrix}\cdot \begin{bmatrix} a_{1}\cr q_{2}\cr q_{3} \end{bmatrix}\]
\[R_{1}=a_{1}\,k-k\,\left(\frac{a_{1}\,k+F_{2}}{k}+\frac{F_{3}}{k}\right)\]
18.7.3 Example: elimination method with no applied force
\[\begin{bmatrix} 1&-1&0\cr -1&2&-1\cr 0&-1&1 \end{bmatrix}\cdot \begin{bmatrix} q_{1}\cr q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 0\cr 0\cr 0 \end{bmatrix}\]
Impose a dof
\[q_{1}=1\]
Store the stiffness row where the load is imposed
\[K_{1}=\begin{bmatrix} 1&-1&0 \end{bmatrix}\]
Store the column for modification of the force vector
\[\begin{bmatrix} -1\cr 0 \end{bmatrix}\]
Examine the reduced matrix
\[K=\begin{bmatrix} 2&-1\cr -1&1 \end{bmatrix}\]
The matrix is invertible
Reduce the length of the force vector
\[F=\begin{bmatrix} 0\cr 0 \end{bmatrix}\]
Create a modification vector from the column of the stiffness matrix times the imposed dislacement vector
\[F_{q}=\begin{bmatrix} -1\cr 0 \end{bmatrix}\]
Reduce the length of the displacement vector.
\[Q=\begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}\]
Modify the force vector.
\[F=\begin{bmatrix} 1\cr 0 \end{bmatrix}\]
The new problem is:
\[\begin{bmatrix} 2&-1\cr -1&1 \end{bmatrix}\cdot \begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 1\cr 0 \end{bmatrix}\]
Invert and multiply.
\[\begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 1&1\cr 1&2 \end{bmatrix}\cdot \begin{bmatrix} 1\cr 0 \end{bmatrix}\]
\[\begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 1\cr 1 \end{bmatrix}\]
Reassemble the displacement vector
\[Q=\begin{bmatrix} 1\cr 1\cr 1 \end{bmatrix}\]
\[R_{1}=\begin{bmatrix} 1&-1&0 \end{bmatrix}\cdot \begin{bmatrix} 1\cr q_{2}\cr q_{3} \end{bmatrix}\]
\[R_{1}=0\]
18.7.4 Example: elimination method with applied force
\[\begin{bmatrix} 1&-1&0\cr -1&2&-1\cr 0&-1&1 \end{bmatrix}\cdot \begin{bmatrix} q_{1}\cr q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 0\cr 0\cr 1 \end{bmatrix}\]
Impose a dof \[q_{1}=1\]
Store the stiffness row where the load is imposed \[K_{1}=\begin{bmatrix} 1&-1&0 \end{bmatrix}\]
Store the column for modification of the force vector \[\begin{bmatrix} -1\cr 0 \end{bmatrix}\]
Examine the reduced matrix \[K=\begin{bmatrix} 2&-1\cr -1&1 \end{bmatrix}\]
The matrix is invertible
Reduce the length of the force vector \[F=\begin{bmatrix} 0\cr 1 \end{bmatrix}\]
Create a modification vector from the column of the stiffness matrix times the imposed dislacement vector \[F_{q}=\begin{bmatrix} -1\cr 0 \end{bmatrix}\]
Reduce the length of the displacement vector. \[Q=\begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}\]
Modify the force vector. \[F=\begin{bmatrix} 1\cr 1 \end{bmatrix}\]
The new problem is: \[\begin{bmatrix} 2&-1\cr -1&1 \end{bmatrix}\cdot \begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 1\cr 1 \end{bmatrix}\]
Invert and multiply. \[\begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 1&1\cr 1&2 \end{bmatrix}\cdot \begin{bmatrix} 1\cr 1 \end{bmatrix}\]
\[\begin{bmatrix} q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 2\cr 3 \end{bmatrix}\]
Reassemble the displacement vector \[Q=\begin{bmatrix} 1\cr 2\cr 3 \end{bmatrix}\]
\[R_{1}=\begin{bmatrix} 1&-1&0 \end{bmatrix}\cdot \begin{bmatrix} 1\cr q_{2}\cr q_{3} \end{bmatrix}\]
\[R_{1}=-1\]
18.7.5 Example: elimination method via partitioning with applied force
\[\begin{bmatrix} 1&-1&0\cr -1&2&-1\cr 0&-1&1 \end{bmatrix}\cdot \begin{bmatrix} q_{1}\cr q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 0\cr 0\cr 1 \end{bmatrix}\]
Impose a dof
\[q_{1}=1\]
Restructure the matrix by reordering equations. \[K_{aa}=\begin{bmatrix} 2&-1\cr -1&1 \end{bmatrix}\]
\[K_{ba}=\begin{bmatrix} -1&0 \end{bmatrix}\]
\[K_{ab}=\begin{bmatrix} -1\cr 0 \end{bmatrix}\]
\[K_{bb}=\begin{bmatrix} 1 \end{bmatrix}\]
\[F_{a}=\begin{bmatrix} 0\cr 1 \end{bmatrix}\]
Compute the displacements which are not imposed: \[Q_{a}=\left(K_{aa}\right)^{-1}\cdot \left(F_{a}-K_{ab}\cdot Q_{b}\right)\]
Compute the reaction forces of the imposition: \[F_{b}=K_{ba}\cdot Q_{a}+K_{bb}\cdot Q_{b}\]
Thus: \[Q_{a}=\begin{bmatrix} 2\cr 3 \end{bmatrix}\]
\[F_{b}=-1\]
18.7.6 Example: Penalty approach
Penalty method
The matrix equations
\[\begin{bmatrix} 1&-1&0\cr -1&2&-1\cr 0&-1&1 \end{bmatrix}\cdot \begin{bmatrix} q_{1}\cr q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 0\cr 0\cr 1 \end{bmatrix}\]
Gather all the imposed DOF into a vector \[A=\begin{bmatrix} 1\cr 0\cr 0 \end{bmatrix}\]
Although it may seem like the load is being artificially constrained by the non-imposed displacements, this isn’t the case because the no change in force is being applied and the stiffness matrix is not penalized for these DOF.
Modify the force vector
\[F_{a}=100\,A\]
\[F_{a}=\begin{bmatrix} 100\cr 0\cr 0 \end{bmatrix}\]
\[F=F+F_{a}\]
\[F=\begin{bmatrix} 100\cr 0\cr 1 \end{bmatrix}\]
Penalize the stiffness matrix
\[{K_{1}}_{1}={K_{1}}_{1}+C\]
\[{K_{1}}_{1}={K_{1}}_{1}+100\]
\[{K_{1}}_{1}=101\]
\[K=\begin{bmatrix} 101&-1&0\cr -1&2&-1\cr 0&-1&1 \end{bmatrix}\]
\[\begin{bmatrix} 101&-1&0\cr -1&2&-1\cr 0&-1&1 \end{bmatrix}\cdot \begin{bmatrix} q_{1}\cr q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} 100\cr 0\cr 1 \end{bmatrix}\]
\[\begin{bmatrix} q_{1}\cr q_{2}\cr q_{3} \end{bmatrix}= \frac{1}{100} \begin{bmatrix} 1 & 1 & 1 \cr 1 & 101 & 101 \cr 1 & 101 & 201 \end{bmatrix}\cdot \begin{bmatrix} 100\cr 0\cr 1 \end{bmatrix}\]
\[\begin{bmatrix} q_{1}\cr q_{2}\cr q_{3} \end{bmatrix}=\begin{bmatrix} \frac{101}{100}\cr \frac{201}{100}\cr \frac{301}{100} \end{bmatrix}\]
Examine the displacement vector: \[Q=\begin{bmatrix} 1.01\cr 2.01\cr 3.01 \end{bmatrix}\]
\[R=-100\,\left(Q-A\right)\]
\[R=\begin{bmatrix} -1\cr -201\cr -301 \end{bmatrix}\]