6.1 General concepts of material constitutive response
6.1.1 Intuitive development of a constitutive matrix
6.1.1.1 Uniform rectangular block pulled on both ends
What strains do you expect for \({\sigma_{xx}}\ne 0\) (all others stresses = 0)?
- We are all familiar with Hooke’s Law: \[\begin{equation*} {\sigma_{xx}}= E {\varepsilon_{xx}} \end{equation*}\]
- Rearranging: \[\begin{equation*} {\varepsilon_{xx}}= \frac{{\sigma_{xx}}}{E} \end{equation*}\]
- But what are the other strains?
- But what are the other strains? \[\begin{align} {\varepsilon_{yy}}=& \, -\nu {\varepsilon_{xx}}\cr {\varepsilon_{zz}}=& \, -\nu {\varepsilon_{xx}}\cr =& \, -\nu \frac{{\sigma_{xx}}}{E} \cr {\varepsilon_{ij}}=& \, 0 \hspace{5mm} \mbox{ for } i\neq j \cr \end{align}\]
- Similarly, we can obtain similar equations in the other directions:
For \({\sigma_{yy}}\ne 0\), all others 0? \[\begin{align} {\varepsilon_{yy}}=& \frac{{\sigma_{yy}}}{E} \cr {\varepsilon_{xx}}=& -\nu \frac{{\sigma_{yy}}}{E} \cr {\varepsilon_{zz}}=& -\nu \frac{{\sigma_{yy}}}{E} \cr {\varepsilon_{ij}}=& \; 0 \hspace{5mm} \mbox{ for } i\neq j \cr \end{align}\]
For \({\sigma_{zz}}\ne 0\), all others 0? \[\begin{align} {\varepsilon_{zz}}=& \, \frac{{\sigma_{zz}}}{E} \cr {\varepsilon_{xx}}=& \, -\nu \frac{{\sigma_{zz}}}{E} \cr {\varepsilon_{yy}}=& \, -\nu \frac{{\sigma_{zz}}}{E} \cr {\varepsilon_{ij}}=& \, 0 \hspace{5mm} \mbox{ for } i\neq j \cr \end{align}\]
- We’ve found a pattern for the normal stress-normal strain response
- What about for shear?
For \({\tau_{xy}}\ne 0\), all others 0? \[\begin{align} {\gamma_{xy}}=& \, \frac{{\tau_{xy}}}{G} \cr {\gamma_{xz}}=& \, 0 \cr {\gamma_{yz}}=& \, 0 \cr {\varepsilon_{ii}}=& \, 0 \hspace{5mm} \mathrm{No \; sum} \cr \end{align}\]
For \({\tau_{xz}}\ne 0\), all others 0? \[\begin{align} {\gamma_{xz}}=& \, \frac{{\tau_{xz}}}{G} \cr {\gamma_{xy}}=& \, 0 \cr {\gamma_{yz}}=& \, 0 \cr {\varepsilon_{ii}}=& \, 0 \hspace{5mm} \mathrm{No \; sum} \cr \end{align}\]
For \({\tau_{yz}}\ne 0\), all others 0? \[\begin{align} {\gamma_{yz}}=& \, \frac{{\tau_{yz}}}{G} \cr {\gamma_{xy}}=& \, 0 \cr {\gamma_{xz}}=& \, 0 \cr {\varepsilon_{ii}}=& \, 0 \hspace{5mm} \mathrm{No \; sum} \cr \end{align}\]
For multiple simultaneous stresses: use superposition