10.7 Closed section vs open section
10.7.1 Closed section vs open section
\[\begin{equation}GJ_{\mathrm{open}} = G \frac{b t^3}{3} = G \frac{\pi d t^3}{3}\end{equation}\] \[\begin{equation}GJ_{\mathrm{ef}}^{\mathrm{cir}}=G \frac{\pi d^{3} \,t}{4}\end{equation}\]
Assume: \[\begin{equation}t=1.0\end{equation}\] \[\begin{equation}d=10.0\end{equation}\]
\[\begin{equation}J_{\mathrm{open}} = 10.4\end{equation}\] \[\begin{equation}J_{\mathrm{ef}}^{\mathrm{cir}}= 78.5\end{equation}\]
The ratio is: \[\begin{align} \frac{J_{\mathrm{ef}}^{\mathrm{cir}}}{J_{\mathrm{open}}} =\frac{3}{4} \left(\frac{d}{t}\right)^2=75.0 \end{align}\]
We see how crucial the shear transfer is to resisting torsion.
Recall that shear flow requires a shear stress field that can be assumed constant through the thickness. Clearly, shear flow theory cannot be used for torsion of a thin walled section.
10.7.2 Recall these equations
\[\begin{equation}\theta = \frac{T \oint{\frac{1}{t\left(s\right) \,G\left(s\right)}\;ds}}{4 \,{A_{\mathrm{Enc}}}^{2}}\end{equation}\]
\[\begin{equation}GJ_{\mathrm{ef}}^{\mathrm{sq}}=\frac{T}{\theta}=d^{3} \,t \,G\end{equation}\] \[\begin{equation}GJ_{\mathrm{ef}}^{\mathrm{cir}}=\frac{T}{\theta}=\frac{d^{3} \,\pi \,t \,G}{4}\end{equation}\]
10.7.3 Multicell thin walled torsion
- \(q_1\) and \(q_2\) are skin shear flows
- \(q_{12}\) is a web shear flow
\[\begin{align} \sum F_z =& \, 0 \\ q_1 dz + q_2 dz + q_{12} dz =& \, 0 \\ q_1 + q_2 + q_{12} =& \, 0 \\ \end{align}\]
At the junction: \[\begin{equation}\displaystyle \sum q_i = 0\end{equation}\]
- In a multi-cell beam, each cell carries its own shear flow \(q_i\).
- The shear flow in the walls is calculated from the cellular shear flows \[\begin{equation} q_{\mathrm{web}} = q_{i+1} - q_i\end{equation}\]
- Torque of a single cell: \(T_i = 2 q_i A_i\)
- For a multiple cell beam: \(T = \sum T_i = 2 \displaystyle \sum_{i=1}^n q_i A_i\)
- Extending the assumption of undistorted shape of the cross-section, all the cells rotate together:
- \(\theta_1 = \theta_2 = ... = \theta_n = \theta\)
- \(\frac{1}{2 A_i} \oint_{\mathrm{cell_i}} \frac{q}{G \cdot t} ds = \frac{1}{2 A_1} \oint_{\mathrm{cell_1}} \frac{q}{G \cdot t} ds\)
- The equation for \(T\) and the \(n-1\) equations \(\theta_i = \theta_1\) provide \(n\) equations for the \(n\) unknowns \(q_i\)
10.7.4 Example:
- \(T = 2 \times 10^4\) \[in \cdot lb\]
- \(L = 100\) in
- \(G_A = 5 \times 10^6\) psi ; \(G_B = G_C = 12\times 10^6\) psi
- \(t_A = 0.1\) in ; \(t_B = t_C = 0.05\) in
- Required: \(\tau_A = ?\); \(\tau_B = ?\) ; \(\tau_C = ?\) ; \(GJ = ?\)
The solution is:
- The torque:
- \(T = 2 \times 10^4 = 2 \cdot (q_2 \cdot A_2 + q_1 \cdot A_1)\)
- The areas:
- \(A_1 = {\frac{1}{2}}\times 10 \times 5 = 25\) in^2
- \(A_2 = {\frac{1}{2}}\pi 5^2 = 39.27\) in^2
- Therefore:
- \(T = 2 \times 10^4 = 2 \cdot (39.27 \cdot q_2 + 25 \cdot q_1)\)
- This provides one of two equations needed for the shear flows.
- Shear flow in the web section:
- \(q_2+q_3-q_1=0\)
- \(q_3=q_1-q_2\)
- Recall we need two equations and two unknowns to solve for the two
cell flows:
- All cells twist at the same rate: \[\begin{equation} \theta_2 = \theta_1 \end{equation}\]
- \(\theta_i=\frac{1}{2 A_i} \oint_{\mathrm{cell_i}} \frac{q}{G \cdot t} ds\)
- Therefore:
- \(\theta_1 = \frac{1}{(2A_1)} \left[\frac{q_1 \cdot 2 \cdot 5 \sqrt{2}}{(G_A \cdot t_A)} + \frac{(q_1-q_2) \cdot 10}{(G_C \cdot t_C)} \right]\)
- \(\theta_2 = \frac{1}{(2A_2)} \left[\frac{q_2 \cdot 5 \pi}{(G_B \cdot t_B)} + \frac{-(q_1-q_2) \cdot 10}{(G_C \cdot t_C)} \right]\)
- \(\theta_1 = 8.990 \times 10^{-7} \cdot q_1 - 3.333 \times 10^{-7} \cdot q_2\)
- \(\theta_2 = 5.455 \times 10^{-7} \cdot q_2 - 2.122 \times 10^{-7} \cdot q_1\)
- Using equation (10.2):
- \(\theta_2 = \theta_1\)
- \(\Longrightarrow(5.455+3.333) \cdot q_2 = (8.990+2.122) \cdot q_1\)
- This provides the second necessary equation.
- \(q_2 = 1.2645 \cdot q_1\)
- Thus, the torque becomes:
- From above: \(T = 2 \times 10^4 = 2 \cdot (39.27 \cdot q_2 + 25 \cdot q_1)\)
- \(2 \times 10^4 = 2 \cdot [39.27 \cdot (1.2645 \cdot q_1) + 25 \cdot q_1]\)
- \(2 \times 10^4 = 2 \cdot [74.655 \cdot q_1]\)
- \(q_1 = 133.95\) lb/in
- \(q_2 = 169.38\) lb/in
- The stress:
- \(\tau = \frac{q}{t} \Longrightarrow\)
- \(\tau_A = \frac{q_1}{t_A} = \frac{133.95}{0.1} = 1339.5\) psi
- \(\tau_B = \frac{q_2}{t_B} = \frac{169.38}{0.05} = 3387.6\) psi
- \(\tau_C = \frac{q_3}{t_C} = \frac{(q_1-q_2)}{t_C} = \frac{-35.43}{0.05} = -708.6\) psi (opposite to the direction assumed)
- \(\tau = \frac{q}{t} \Longrightarrow\)
- Using one of the rate of twist equations to establish the rate of
twist:
- \(\theta_2 = 5.455 \times 10^{-7} \cdot q_2 - 2.122 \times 10^{-7} \cdot q_1 = 639.73 \times 10^{-7}\) rad/in
- Thus, the torsional rigidity:
- \(GJ = \frac{T}{\theta} = 2 \cdot \frac{10^4}{6.3973} \times 10^{-5} = 312.6 \times 10^6\) \[lb \cdot in^2/rad\]
Note: When one cell is open is it likely negigible!
Hence, set \(q=0\).
Due to overlapping material and to provide continuity, the lectures slides for Lecture 1 are included in the materials for Lecture 0