4.5 Principal stress
- Suppose we are interested in finding which plane
extremizes (maximizes or minimizes) the normal stress
component?
- Why would we want to do that?
- For example, crack propagation tends to propagate tangentially to the maximum normal stress
- To find an orientation that extremizes the normal component, we find an orientation where the shear stress is zero.
\[\begin{align} {\vec{S}}=& \; 0 \\ {\vec{T}_n}=& \; {\vec{N}}+ {\vec{S}}\\ {\vec{T}_n}=& \; {\vec{N}}\\ {\vec{T}_n}=& \; |{\vec{T}_n}| \, {\vec{n}}\\ {\vec{T}_n}=& \; {\sigma_{\mathrm{P}}}\, {\vec{n}}\\ \end{align}\]
We call \(\sigma_P\) the principal stress and the orientation (\({\vec{n}}\)) the principal orientation or principal axis
4.5.1 Principal stress values
Recall the relationship between the stress tensor and the traction vector: \[\begin{align} [\sigma] \cdot {\vec{n}}= {\vec{T}_n}\\ [\sigma] \cdot {\vec{n}}= {\sigma_{\mathrm{P}}}\, {\vec{n}}\\ [\sigma] \cdot {\vec{n}}- {\sigma_{\mathrm{P}}}\, {\vec{n}}= \vec{0}\\ \left([\sigma] - {\sigma_{\mathrm{P}}}[I]\right) \cdot {\vec{n}}= \vec{0}\\ \end{align}\]
Do you recognize this class of problem?
4.5.2 Solution to the eigenvalue problem
By more than coincidence, this is the very definition of an eigenvalue problem with representing the eigenvalues of \([\sigma]\):
\[\left[ \begin{array}{ccc} {\sigma_{xx}}- {\sigma_{\mathrm{P}}}& {\sigma_{xy}}& {\sigma_{xz}}\\ {\sigma_{xy}}& {\sigma_{yy}}- {\sigma_{\mathrm{P}}}& {\sigma_{yz}}\\ {\sigma_{xz}}& {\sigma_{yz}}& {\sigma_{zz}}- {\sigma_{\mathrm{P}}}\\ \end{array} \right] \left\{ \begin{array}{c} l \\ m \\ n \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\]
Non-trivial solutions can be obtained by setting the determinant to zero. \[\det \left([\sigma] - {\sigma_{\mathrm{P}}}[I]\right) = 0\]
- The result is: \[{\sigma_{\mathrm{P}}}^3 - I_1 {\sigma_{\mathrm{P}}}^2 + I_2 {\sigma_{\mathrm{P}}}- I_3 = 0\]
- The roots of the equation (\(\sigma_P\)) are called principal stresses and they are conventionally ordered \(\sigma_1 \ge \sigma_2 \ge \sigma_3\).
4.5.3 Characteristic equation and invariants
- The I values are called “invariants” of the stress tensor.
- Meaning they do not change as the stress tensor is transformed.
- The invariants are:
- The trace of the tensor, also called the hydrostatic stress \[I_1 = {\sigma_{xx}}+ {\sigma_{yy}}+{\sigma_{zz}}\]
- \(I_2\) (No common name), relates to the strength of the deviatoric stress (and thus to yield). See J2 plasticity theory. \[I_2 = {\sigma_{xx}}{\sigma_{yy}}+ {\sigma_{xx}}{\sigma_{zz}}+ {\sigma_{yy}}{\sigma_{zz}} - \left({\sigma_{xy}}^2+{\sigma_{xz}}^2+{\sigma_{yz}}^2\right)\]
- The determinant of the tensor \[I_3 = \det [\sigma]\]
4.5.4 Principal directions
- Having solved the eigenvalue problem for the principal stresses, we can now compute the principal orientations:
- Define the principal orientations as \({\vec{n}}_i\) \[{\vec{n}}_i = l_i {\vec{i}}+ m_i {\vec{j}}+ n_i {\vec{k}}\]
- These are determined by: \[\left[ \begin{array}{ccc} {\sigma_{xx}}- \sigma_i & {\sigma_{xy}}& {\sigma_{xz}}\\ {\sigma_{xy}}& {\sigma_{yy}}- \sigma_i & {\sigma_{yz}}\\ {\sigma_{xz}}& {\sigma_{yz}}& {\sigma_{zz}}- \sigma_i \\ \end{array} \right] \left\{ \begin{array}{c} l_i \\ m_i \\ n_i \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\]
4.5.5 Notes about principal stresses and orientations
The principal orientation vectors are normalized to have unit length and are the eigenvectors of the stress tensor.
Note: The maximum shear stress is on an octahedral plane (The planes that bisect the principal planes) and be computed from the difference of the maximum principal stresses. (Mohr’s Circle)
\[\tau_{\mathrm{Max}} = \frac{1}{2}(\sigma_1 - \sigma_3 )\]
4.5.6 Example
Given a stress state: \[[\sigma]= \left[ \begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right]\]
Find the principal stresses, principal directions, and maximum shear stress:
Solution
Invariants and principal stresses
First, find the invariants of the tensor: \[\begin{align} I_1 =& 3 \\ I_2 =& (1) (1) + (1) (1) + (1) (1) - (1^2 + 0^2 + 0^2) = 2 \\ I_3 =& \det [\sigma] = (1) (1-0) - (1) (1-0)+ (0) (0-0) =0 \\ \end{align}\]
Then put them into the equation and solve: \[{\sigma_{\mathrm{P}}}^3-3 {\sigma_{\mathrm{P}}}^2+2 {\sigma_{\mathrm{P}}}+ 0 =0\]
\[{\sigma_{\mathrm{P}}}= 2, 1, 0\]
Solution
First principal direction
The directions are important; find them. \[\left[ \begin{array}{ccc} 1 -2 & 1 & 0 \\ 1 & 1 -2 & 0 \\ 0 & 0 & 1 -2\\ \end{array} \right] \left\{ \begin{array}{c} l_1 \\ m_1 \\ n_1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\] \[\left[ \begin{array}{ccc} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \\ \end{array} \right] \left\{ \begin{array}{c} l_1 \\ m_1 \\ n_1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\]
Inspection of equation 3: \[\begin{align} -n_1 = 0 \\ \end{align}\]
Now equation 1: \[\begin{align} -l_1 + m_1 = 0 \\ l_1 = m_1 \\ \end{align}\]
Magnitudes need be unitized, therefore:
\[\begin{align} l_1^2 + l_1^2 + 0 = 1\\ 2 l_1^2 = 1\\ l_1 = \sqrt{\frac{1}{2}}\\ \vec{n}_1 = \sqrt{\frac{1}{2}} \left[ \begin{array}{c} 1 \\ 1 \\ 0 \\ \end{array} \right] \end{align}\]
Second principal direction
\[\left[ \begin{array}{ccc} 1 -1 & 1 & 0 \\ 1 & 1 -1 & 0 \\ 0 & 0 & 1 -1\\ \end{array} \right] \left\{ \begin{array}{c} l_2 \\ m_2 \\ n_2 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\] \[\left[ \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right] \left\{ \begin{array}{c} l_2 \\ m_2 \\ n_2 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\]
Inspection of equation 1 and 2: \[\begin{align} l_2 = 0 \\ m_2 = 0 \\ \end{align}\]
Magnitudes need be unitized, therefore:
\[\begin{align} n_2^2 = 1\\ \vec{n}_2 = \left[ \begin{array}{c} 0 \\ 0 \\ 1 \\ \end{array} \right] \end{align}\]
Third principal direction
\[\left[ \begin{array}{ccc} 1 -0 & 1 & 0 \\ 1 & 1 -0 & 0 \\ 0 & 0 & 1 -0 \\ \end{array} \right] \left\{ \begin{array}{c} l_3 \\ m_3 \\ n_3 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\]
Inspection of equation 3: \[\begin{align} n_3 = 0 \\ \end{align}\]
Now equation 1: \[\begin{align} l_3 + m_3 = 0 \\ l_3 = -m_3 \\ \end{align}\]
Magnitudes need be unitized, therefore: \[\begin{align} l_3^2 + (-l_3)^2 + 0 = 1\\ 2 l_3^2 = 1\\ l_3 = \sqrt{\frac{1}{2}}\\ \vec{n}_3 = \sqrt{\frac{1}{2}} \left[ \begin{array}{c} 1 \\ -1 \\ 0 \\ \end{array} \right] \end{align}\]
In summary, the unit vectors are:
\[\sqrt{\frac{1}{2}} \left[ \begin{array}{ccc} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & \sqrt{2} & 0 \\ \end{array} \right]\]
Sanity check: We can check orthogonality:
\[\vec{n}_1 \times \vec{n}_2 = \vec{n}_3\]
\[\mathbf{a}\times\mathbf{b}= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{vmatrix} = \left| \begin{array}{ccc} {\vec{i}}& {\vec{j}}& {\vec{k}}\\ \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0 \\ 0 & 0 & 1 \\ \end{array} \right|\]
which is:
\[\vec{n}_3 = \frac{i}{\sqrt{2}}-\frac{j}{\sqrt{2}}\]
4.5.7 Additional thoughts on principal stresses
- The principal stresses are defined as the normal stresses
which can occur when all shear stresses vanish.
- These coordinate directions are called the principal axes.
- If two principal stresses are equal, then two axes are arbitrary in a plane.
- If all three principal stresses are equal, then all three axes
are arbitrary.
- (See example in the text for the procedure to follow).