4.6 Equations of motion: equilibrium and stress
4.6.1 2D conservation of linear momentum (translational equilibrium equations)
Equilibrium parallelepiped - a differential volume element
\[\begin{align} \sum F_x &= \; m a_x \\ \end{align}\]
\[\begin{align} \delta y \left({{\sigma_{xx}}(x+\delta x,y)}-{{\sigma_{xx}}(x,y)}\right) &\\ + \delta x \left({\tau_{yx} (x,y+\delta y)}-{{\tau_{yx}}(x,y)}\right) &\\ + \delta x \delta y \; b_x &= \delta x \delta y \; \rho \, a_x\\ \end{align}\]
\[\begin{align} \frac{{{\sigma_{xx}}(x+\delta x,y)}-{{\sigma_{xx}}(x,y)}}{\delta x} + \frac{{\tau_{yx} (x,y+\delta y)}-{{\tau_{yx}}(x,y)}}{\delta y} + b_x &= \rho \, a_x\\ \end{align}\]
\[\begin{align} {\frac{\partial {{\sigma_{xx}}(x,y)}}{\partial x}}+ {\frac{\partial {{\tau_{yx}}(x,y)}}{\partial y}}+b_x &= \rho \, a_x\\ \end{align}\]
Similarly after summing the forces in \(y\): \[\begin{align} {\frac{\partial {{\sigma_{yy}}(x,y)}}{\partial y}}+ {\frac{\partial {{\tau_{xy}}(x,y)}}{\partial x}}+ b_y &= \rho \, a_y\\ \end{align}\]
Generalizing: the stress equilibrium equations are: \[\begin{align} {{\sigma_{xx}} {}_{,x}} + {{\sigma_{yx}} {}_{,y}} + {{\sigma_{zx}} {}_{,z}} + b_x = \rho \, a_x\\ {{\sigma_{xy}} {}_{,x}} + {{\sigma_{yy}} {}_{,y}} + {{\sigma_{zy}} {}_{,z}} + b_y = \rho \, a_y\\ {{\sigma_{xz}} {}_{,x}} + {{\sigma_{yz}} {}_{,y}} + {{\sigma_{zz}} {}_{,z}} + b_z = \rho \, a_z\\ \end{align}\]
The form of the equations of motion depend on the coordinate system used.
4.6.2 2D moment equilibrium equations (conservation of angular momentum)
For an infinitesimal body:
\[\sum M_{C z} = I_M \ddot{\theta}\]
- (neglect inertia for brevity)
\[\begin{align} \frac{\delta x}{2} \delta y \left[{\tau_{xy} (x+\delta x,y)}+ {{\tau_{xy}}(x,y)}\right] &\\ - \frac{\delta y}{2} \delta x \left[{\tau_{yx} (x,y+\delta y)}+ {{\tau_{yx}}(x,y)}\right] &= 0 \\ \end{align}\]
\[\begin{align} \left[{\tau_{xy} (x+\delta x,y)}+ {{\tau_{xy}}(x,y)}\right] & \\ - \left[{\tau_{yx} (x,y+\delta y)}+{{\tau_{yx}}(x,y)}\right] &= 0 \\ \end{align}\]
\[\begin{align} \left[{\tau_{xy} (x+\delta x,y)}+ {{\tau_{xy}}(x,y)}\right] &= \left[{\tau_{yx} (x,y+\delta y)}+{{\tau_{yx}}(x,y)}\right] \\ \end{align}\]
\[\begin{align} \lim_{\delta x, \delta y \rightarrow 0} & \\ \end{align}\]
\[\begin{align} 2 \, {\tau_{xy}}&= 2 \, {\tau_{yx}}\\ \end{align}\]
Conclusion: the stress tensor is symmetric
\[\begin{align} {\tau_{xy}}&= {\tau_{yx}}\\ {\tau_{xz}}&= {\tau_{zx}}\\ {\tau_{yz}}&= {\tau_{zy}}\\ \end{align}\]
\[\left[\sigma\right] = \left[ \begin{array}{ccc} {\sigma_{xx}}& {\sigma_{xy}}& {\sigma_{xz}}\\ {\sigma_{xy}}& {\sigma_{yy}}& {\sigma_{yz}}\\ {\sigma_{xz}}& {\sigma_{yz}}& {\sigma_{zz}}\\ \end{array} \right]\]
There are only 6 unique components in a stress tensor.
Conclusion
Close examination of these equations illustrates that the normal stress and shear stress are coupled together.
Additional discussion about the coupling:
4.6.3 Equilibrium in cylindrical coordinates
By similar arguments, equilibrium in cylindrical coordinates (\(r, \theta, z\)) requires:
\[\begin{align} {\frac{\partial {\sigma_{rr}}}{\partial r}} + \frac{1}{r}{\frac{\partial {\sigma_{r\theta}}}{\partial \theta}} + {\frac{\partial {\sigma_{rz}}}{\partial z}} + \frac{{\sigma_{rr}}-{\sigma_{\theta\theta}}}{r} + b_r =& \; \rho \; a_r\\ {\frac{\partial {\sigma_{r\theta}}}{\partial r}} + \frac{1}{r}{\frac{\partial {\sigma_{\theta\theta}}}{\partial \theta}} + {\frac{\partial {\sigma_{\theta z}}}{\partial z}} + \frac{2 \, {\sigma_{r\theta}}}{r} + b_\theta =& \; \rho \; a_\theta\\ {\frac{\partial {\sigma_{rz}}}{\partial r}} + \frac{1}{r}{\frac{\partial {\sigma_{\theta z}}}{\partial \theta}} + {\frac{\partial {\sigma_{zz}}}{\partial z}} + \frac{{\sigma_{rz}}}{r} + b_z =& \; \rho \; a_z\\ \end{align}\]
4.6.4 Equilibrium in spherical coordinates
In spherical coordinates (\(r, \theta, \phi\)), equilibrium requires:
\[\begin{align} {\frac{\partial {\sigma_{rr}}}{\partial r}} + \frac{1}{r} {\frac{\partial {\sigma_{\theta r}}}{\partial \theta}} + \frac{1}{r \sin \theta} {\frac{\partial {\sigma_{\phi r}}}{\partial \phi}} + \frac{1}{r} \left[ 2 \, {\sigma_{rr}}- {\sigma_{\phi\phi}}- {\sigma_{\theta\theta}}- {\sigma_{r\theta}}\cot \theta \right] + b_r =& \; \rho \; a_r\\ {\frac{\partial {\sigma_{r\theta}}}{\partial r}} + \frac{1}{r} {\frac{\partial {\sigma_{\theta\theta}}}{\partial \theta}} + \frac{1}{r \sin \theta} {\frac{\partial {\sigma_{\phi \theta}}}{\partial \phi}} + \frac{1}{r} \left[ ({\sigma_{\theta\theta}}-{\sigma_{\phi\phi}}) \cot \theta + 3 {\sigma_{r\theta}} \right] + b_{\theta} =& \; \rho \; a_{\theta}\\ {\frac{\partial {\sigma_{r\phi}}}{\partial r}} + \frac{1}{r} {\frac{\partial {\sigma_{\theta \phi}}}{\partial \theta}} + \frac{1}{r \sin \theta} {\frac{\partial {\sigma_{\phi\phi}}}{\partial \phi}} + \frac{1}{r} \left[ 3 {\sigma_{r\phi}}+ 2 \, {\sigma_{\theta \phi}}\cot \theta \right] + b_{\phi} =& \; \rho \; a_{\phi}\\ \end{align}\]