11.5 Virtual Work
- Recall our definition of a potential function:
- Potential (\(V\))–a function for relating a force-like quantity to a gradient. \[\begin{equation*} F_i = -{\frac{\partial V}{\partial i}} \end{equation*}\]
- Therefore: define \(V\) as a potential function of the external forces (acting through external displacements). \[\begin{equation*} \delta V = - \delta W_e \end{equation*}\](Think of \(\delta\) as an arbitrary increment.)
- Call \(U\) a potential function of the internal forces (acting through internal displacements): \[\begin{equation*} \delta U = - \delta W_i \end{equation*}\]
- We can now examine a “work” equation such that: \[\begin{equation*} \delta W = + \delta W_e +\delta W_i =0 \end{equation*}\]
- We can refer to this equation as “Virtual Work”.
- Note that this means: \[\begin{equation*} \delta U + \delta V=0 \end{equation*}\] \[\begin{equation*} \delta U = \delta W_e \end{equation*}\]
11.5.1 Definitions
- \(\delta W ( = \Delta W)\) “Virtual work” - The “work” done by a force (moment) due to a “virtual displacement”.
- \(\delta u ( = \Delta u)\) “Virtual displacement” - A kinematically
admissible displacement
- A displacement that does not violate the kinematic boundary conditions
- The displacement is arbitrary
- It need not be related to the actual displacement that results from the applied loads.
- \(\delta F ( = \Delta F)\) “Virtual force”
- Any force field that is zero on the boundary
- It must not do work on the boundary
- The force is arbitrary
- It need not be related to the actual force that results from the displacements.
- Could also be a virtual stress
- Any force field that is zero on the boundary
- “The principle of virtual work”
- A system is in static equilibrium if (and only if) the virtual work is zero for all independent virtual displacements.
- \(\delta W=0\)
11.5.2 Rigid body example
- Note: since we are considering this as a rigid body and don’t want to track strain energy (spring energy), we can assume that the spring applies an external force based on the spring force formula.
- Step 1: Describe the current position of the forces: \[\begin{equation*} \begin{split} y_P\left(\theta\right) &= \, +\frac{l\,\sin \theta}{2} \\ y_k\left(\theta\right) &= \, -\frac{l\,\sin \theta}{2} \\ y_Q\left(\theta\right) &= \, +\frac{l\,\sin \theta}{2} \\ \end{split} \end{equation*}\]
- Step 2: Take the variation. (You are assuming that a small virtual displacement can be added to the equilibrium displacement. How does the position change assuming a small change in theta? This is very similar to taking a derivative.) \[\begin{equation*} \begin{split} \delta y_P &= \, +\frac{l\,\cos \theta\,\delta \theta}{2} \\ \delta y_k &= \, -\frac{l\,\cos \theta\,\delta \theta}{2} \\ \delta y_Q &= \, +\frac{l\,\cos \theta\,\delta \theta}{2} \\ \end{split} \end{equation*}\]
- Step 3: Write the virtual work, ie the forces times the virtual displacements. \[\begin{equation*} \delta W_e=\delta y_Q\,F_Q+\delta y_P\,F_P+\delta y_k\,F_k \end{equation*}\] \[\begin{equation*} \delta W_e=\frac{l\,F_Q\,\cos \theta\,\delta \theta}{2}+\frac{l\,F_P\,\cos \theta\,\delta \theta}{2}-\frac{l\,F_k\,\cos \theta\,\delta \theta}{2} \end{equation*}\]
- Step 4: Identify the forces: \[\begin{equation*} \begin{split} F_P &=\, -P \\ F_Q &=\, +Q \\ \end{split} \end{equation*}\] \[\begin{equation*} \begin{split} F_k &=\, - k\,y_k\left(\theta\right) \\ F_k &=\, \frac{l\,k\,\sin \theta}{2} \\ \end{split} \end{equation*}\]
Plug these forces into the virtual work equation: \[\begin{equation*} \frac{l\,F_Q\,\cos \theta\,\delta \theta}{2}+\frac{l\,F_P\,\cos \theta\,\delta \theta}{2}-\frac{l\,F_k\,\cos \theta\,\delta \theta}{2}=0 \end{equation*}\]
\[\begin{equation*} \begin{split} \frac{l\,\left(F_Q+F_P-F_k\right)\,\cos \theta\,\delta \theta}{2} &=\, 0 \\ \frac{l\,\cos \theta\,\left(Q-P-\frac{l\,k\,\sin \theta}{2}\right)\,\delta \theta}{2} &=\, 0 \\ \end{split} \end{equation*}\]
Since we know that \(\delta \theta\) is arbitrary: \[\begin{equation*} \frac{l\,\cos \theta\,\left(Q-P-\frac{l\,k\,\sin \theta}{2}\right)}{2}=0 \end{equation*}\]
Now linearize the problem with the small angle assumptions: \[\begin{align} \sin \theta =& \; \theta \\ \cos \theta =& \; 1\\ \end{align}\]
\[\begin{equation*} \frac{l\,\left(Q-P-\frac{l\,k\,\theta}{2}\right)}{2}=0 \end{equation*}\]
We can now solve the problem for \(\theta\): \[\begin{equation*} \theta=\frac{2\,\left(Q-P\right)}{l\,k} \end{equation*}\]
Sanity checks?