122 integer ithermal,icmd,kode,ielas,iel,iint,nstate_,mi(*),iorien
124 integer index(18),i,j,k,l,ipiv(18),info,ichange,neq,lda,ldb,
125 & nrhs,iplas,icounter
127 real*8 ep0(6),al10(18),al20(18),dg0(18),ep(6),al1(18),
128 & al2(18),dg(18),ddg(18),xm(6,18),h(18,18),ck(18),cn(18),
129 & c(18),d(18),phi(18),delta(18),r0(18),q(18),b(18),cphi(18),
130 & q1(18),q2(18),stri(6),htri(18),sg(18),r(42),xmc(6,18),aux(18),
131 & t(42),gl(18,18),gr(18,18),ee(6),c1111,c1122,c1212,dd,
132 & skl(3,3),xmtran(3,3),ddsdde(6,6),xx(6,18)
134 real*8 elconloc(21),stiff(21),emec(6),emec0(6),beta(6),stre(6),
135 & vj,t1l,dtime,xkl(3,3),xokl(3,3),voj,pgauss(3),orab(7,*),
136 & elas(21),time,ttime
138 real*8 xstate(nstate_,mi(1),*),xstateini(nstate_,mi(1),*)
140 save ep0,al10,al20,dg0,xx,h
165 & /0.4082482904639e+00,-0.4082482904639e+00, 0.0000000000000e+00,
166 & 0.0000000000000e+00, 0.2041241452319e+00,-0.2041241452319e+00,
167 & 0.4082482904639e+00, 0.0000000000000e+00,-0.4082482904639e+00,
168 & 0.2041241452319e+00, 0.0000000000000e+00,-0.2041241452319e+00,
169 & 0.0000000000000e+00, 0.4082482904639e+00,-0.4082482904639e+00,
170 & 0.2041241452319e+00,-0.2041241452319e+00, 0.0000000000000e+00,
171 & 0.0000000000000e+00,-0.4082482904639e+00, 0.4082482904639e+00,
172 & 0.2041241452319e+00, 0.2041241452319e+00, 0.0000000000000e+00,
173 & 0.4082482904639e+00, 0.0000000000000e+00,-0.4082482904639e+00,
174 & -0.2041241452319e+00, 0.0000000000000e+00, 0.2041241452319e+00,
175 & 0.4082482904639e+00,-0.4082482904639e+00, 0.0000000000000e+00,
176 & 0.0000000000000e+00, 0.2041241452319e+00, 0.2041241452319e+00,
177 & 0.0000000000000e+00,-0.4082482904639e+00, 0.4082482904639e+00,
178 & 0.2041241452319e+00,-0.2041241452319e+00, 0.0000000000000e+00,
179 & 0.4082482904639e+00, 0.0000000000000e+00,-0.4082482904639e+00,
180 & -0.2041241452319e+00, 0.0000000000000e+00,-0.2041241452319e+00,
181 & 0.4082482904639e+00,-0.4082482904639e+00, 0.0000000000000e+00,
182 & 0.0000000000000e+00,-0.2041241452319e+00,-0.2041241452319e+00,
183 & 0.0000000000000e+00, 0.4082482904639e+00,-0.4082482904639e+00,
184 & 0.2041241452319e+00, 0.2041241452319e+00, 0.0000000000000e+00,
185 & 0.4082482904639e+00, 0.0000000000000e+00,-0.4082482904639e+00,
186 & 0.2041241452319e+00, 0.0000000000000e+00, 0.2041241452319e+00,
187 & 0.4082482904639e+00,-0.4082482904639e+00, 0.0000000000000e+00,
188 & 0.0000000000000e+00,-0.2041241452319e+00, 0.2041241452319e+00,
189 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
190 & 0.3535533905933e+00, 0.3535533905933e+00, 0.0000000000000e+00,
191 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
192 & 0.3535533905933e+00,-0.3535533905933e+00, 0.0000000000000e+00,
193 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
194 & 0.3535533905933e+00, 0.0000000000000e+00, 0.3535533905933e+00,
195 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
196 & 0.3535533905933e+00, 0.0000000000000e+00,-0.3535533905933e+00,
197 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
198 & 0.0000000000000e+00, 0.3535533905933e+00, 0.3535533905933e+00,
199 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
200 & 0.0000000000000e+00, 0.3535533905933e+00,-0.3535533905933e+00/
204 & /0.4082482904639e+00,-0.4082482904639e+00, 0.0000000000000e+00,
205 & 0.0000000000000e+00, 0.2041241452319e+00,-0.2041241452319e+00,
206 & 0.4082482904639e+00, 0.0000000000000e+00,-0.4082482904639e+00,
207 & 0.2041241452319e+00, 0.0000000000000e+00,-0.2041241452319e+00,
208 & 0.0000000000000e+00, 0.4082482904639e+00,-0.4082482904639e+00,
209 & 0.2041241452319e+00,-0.2041241452319e+00, 0.0000000000000e+00,
210 & 0.0000000000000e+00,-0.4082482904639e+00, 0.4082482904639e+00,
211 & 0.2041241452319e+00, 0.2041241452319e+00, 0.0000000000000e+00,
212 & 0.4082482904639e+00, 0.0000000000000e+00,-0.4082482904639e+00,
213 & -0.2041241452319e+00, 0.0000000000000e+00, 0.2041241452319e+00,
214 & 0.4082482904639e+00,-0.4082482904639e+00, 0.0000000000000e+00,
215 & 0.0000000000000e+00, 0.2041241452319e+00, 0.2041241452319e+00,
216 & 0.0000000000000e+00,-0.4082482904639e+00, 0.4082482904639e+00,
217 & 0.2041241452319e+00,-0.2041241452319e+00, 0.0000000000000e+00,
218 & 0.4082482904639e+00, 0.0000000000000e+00,-0.4082482904639e+00,
219 & -0.2041241452319e+00, 0.0000000000000e+00,-0.2041241452319e+00,
220 & 0.4082482904639e+00,-0.4082482904639e+00, 0.0000000000000e+00,
221 & 0.0000000000000e+00,-0.2041241452319e+00,-0.2041241452319e+00,
222 & 0.0000000000000e+00, 0.4082482904639e+00,-0.4082482904639e+00,
223 & 0.2041241452319e+00, 0.2041241452319e+00, 0.0000000000000e+00,
224 & 0.4082482904639e+00, 0.0000000000000e+00,-0.4082482904639e+00,
225 & 0.2041241452319e+00, 0.0000000000000e+00, 0.2041241452319e+00,
226 & 0.4082482904639e+00,-0.4082482904639e+00, 0.0000000000000e+00,
227 & 0.0000000000000e+00,-0.2041241452319e+00, 0.2041241452319e+00,
228 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
229 & 0.3535533905933e+00, 0.3535533905933e+00, 0.0000000000000e+00,
230 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
231 & 0.3535533905933e+00,-0.3535533905933e+00, 0.0000000000000e+00,
232 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
233 & 0.3535533905933e+00, 0.0000000000000e+00, 0.3535533905933e+00,
234 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
235 & 0.3535533905933e+00, 0.0000000000000e+00,-0.3535533905933e+00,
236 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
237 & 0.0000000000000e+00, 0.3535533905933e+00, 0.3535533905933e+00,
238 & 0.0000000000000e+00, 0.0000000000000e+00, 0.0000000000000e+00,
239 & 0.0000000000000e+00, 0.3535533905933e+00,-0.3535533905933e+00/
243 & /0.1e+01,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
244 & -0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00, 0.0e+00, 0.0e+00,
245 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,-0.1e+00, 0.1e+01,-0.1e+00,
246 & -0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
247 & -0.1e+00,-0.1e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
248 & 0.0e+00,-0.1e+00,-0.1e+00, 0.1e+01,-0.1e+00,-0.1e+00,-0.1e+00,
249 & -0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00, 0.0e+00,
250 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,-0.1e+00,-0.1e+00,
251 & -0.1e+00, 0.1e+01,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
252 & -0.1e+00,-0.1e+00,-0.1e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
253 & 0.0e+00, 0.0e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00, 0.1e+01,
254 & -0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
255 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,-0.1e+00,
256 & -0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00, 0.1e+01,-0.1e+00,-0.1e+00,
257 & -0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00, 0.0e+00, 0.0e+00, 0.0e+00,
258 & 0.0e+00, 0.0e+00, 0.0e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
259 & -0.1e+00,-0.1e+00, 0.1e+01,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
260 & -0.1e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
261 & -0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
262 & 0.1e+01,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00, 0.0e+00, 0.0e+00,
263 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,-0.1e+00,-0.1e+00,-0.1e+00,
264 & -0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00, 0.1e+01,-0.1e+00,
265 & -0.1e+00,-0.1e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
266 & 0.0e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
267 & -0.1e+00,-0.1e+00,-0.1e+00, 0.1e+01,-0.1e+00,-0.1e+00, 0.0e+00,
268 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,-0.1e+00,-0.1e+00,
269 & -0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
270 & -0.1e+00, 0.1e+01,-0.1e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
271 & 0.0e+00, 0.0e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
272 & -0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00, 0.1e+01,
273 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
274 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
275 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.1e+01,-0.1e+00,-0.1e+00,
276 & -0.1e+00,-0.1e+00,-0.1e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
277 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
278 & 0.0e+00,-0.1e+00, 0.1e+01,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
279 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
280 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,-0.1e+00,-0.1e+00,
281 & 0.1e+01,-0.1e+00,-0.1e+00,-0.1e+00, 0.0e+00, 0.0e+00, 0.0e+00,
282 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
283 & 0.0e+00, 0.0e+00,-0.1e+00,-0.1e+00,-0.1e+00, 0.1e+01,-0.1e+00,
284 & -0.1e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
285 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,-0.1e+00,
286 & -0.1e+00,-0.1e+00,-0.1e+00, 0.1e+01,-0.1e+00, 0.0e+00, 0.0e+00,
287 & 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00, 0.0e+00,
288 & 0.0e+00, 0.0e+00, 0.0e+00,-0.1e+00,-0.1e+00,-0.1e+00,-0.1e+00,
289 & -0.1e+00, 0.1e+01/),(/18,18/))
302 xmtran(i,j)=skl(i,1)*skl(j,1)*xx(1,k)+
303 & skl(i,2)*skl(j,2)*xx(2,k)+
304 & skl(i,3)*skl(j,3)*xx(3,k)+
305 & (skl(i,1)*skl(j,2)+
306 & skl(i,2)*skl(j,1))*xx(4,k)+
307 & (skl(i,1)*skl(j,3)+
308 & skl(i,3)*skl(j,1))*xx(5,k)+
309 & (skl(i,2)*skl(j,3)+
310 & skl(i,3)*skl(j,2))*xx(6,k)
322 & skl(1,1)*skl(1,1)*skl(1,1)*skl(1,1)*c1111+
323 & skl(1,1)*skl(1,1)*skl(1,2)*skl(1,2)*c1122+
324 & skl(1,1)*skl(1,1)*skl(1,3)*skl(1,3)*c1122+
325 & skl(1,1)*skl(1,2)*skl(1,1)*skl(1,2)*c1212+
326 & skl(1,1)*skl(1,2)*skl(1,2)*skl(1,1)*c1212+
327 & skl(1,1)*skl(1,3)*skl(1,1)*skl(1,3)*c1212+
328 & skl(1,1)*skl(1,3)*skl(1,3)*skl(1,1)*c1212+
329 & skl(1,2)*skl(1,1)*skl(1,1)*skl(1,2)*c1212+
330 & skl(1,2)*skl(1,1)*skl(1,2)*skl(1,1)*c1212+
331 & skl(1,2)*skl(1,2)*skl(1,1)*skl(1,1)*c1122+
332 & skl(1,2)*skl(1,2)*skl(1,2)*skl(1,2)*c1111+
333 & skl(1,2)*skl(1,2)*skl(1,3)*skl(1,3)*c1122+
334 & skl(1,2)*skl(1,3)*skl(1,2)*skl(1,3)*c1212+
335 & skl(1,2)*skl(1,3)*skl(1,3)*skl(1,2)*c1212+
336 & skl(1,3)*skl(1,1)*skl(1,1)*skl(1,3)*c1212+
337 & skl(1,3)*skl(1,1)*skl(1,3)*skl(1,1)*c1212+
338 & skl(1,3)*skl(1,2)*skl(1,2)*skl(1,3)*c1212+
339 & skl(1,3)*skl(1,2)*skl(1,3)*skl(1,2)*c1212+
340 & skl(1,3)*skl(1,3)*skl(1,1)*skl(1,1)*c1122+
341 & skl(1,3)*skl(1,3)*skl(1,2)*skl(1,2)*c1122+
342 & skl(1,3)*skl(1,3)*skl(1,3)*skl(1,3)*c1111
344 & skl(1,1)*skl(1,1)*skl(2,1)*skl(2,1)*c1111+
345 & skl(1,1)*skl(1,1)*skl(2,2)*skl(2,2)*c1122+
346 & skl(1,1)*skl(1,1)*skl(2,3)*skl(2,3)*c1122+
347 & skl(1,1)*skl(1,2)*skl(2,1)*skl(2,2)*c1212+
348 & skl(1,1)*skl(1,2)*skl(2,2)*skl(2,1)*c1212+
349 & skl(1,1)*skl(1,3)*skl(2,1)*skl(2,3)*c1212+
350 & skl(1,1)*skl(1,3)*skl(2,3)*skl(2,1)*c1212+
351 & skl(1,2)*skl(1,1)*skl(2,1)*skl(2,2)*c1212+
352 & skl(1,2)*skl(1,1)*skl(2,2)*skl(2,1)*c1212+
353 & skl(1,2)*skl(1,2)*skl(2,1)*skl(2,1)*c1122+
354 & skl(1,2)*skl(1,2)*skl(2,2)*skl(2,2)*c1111+
355 & skl(1,2)*skl(1,2)*skl(2,3)*skl(2,3)*c1122+
356 & skl(1,2)*skl(1,3)*skl(2,2)*skl(2,3)*c1212+
357 & skl(1,2)*skl(1,3)*skl(2,3)*skl(2,2)*c1212+
358 & skl(1,3)*skl(1,1)*skl(2,1)*skl(2,3)*c1212+
359 & skl(1,3)*skl(1,1)*skl(2,3)*skl(2,1)*c1212+
360 & skl(1,3)*skl(1,2)*skl(2,2)*skl(2,3)*c1212+
361 & skl(1,3)*skl(1,2)*skl(2,3)*skl(2,2)*c1212+
362 & skl(1,3)*skl(1,3)*skl(2,1)*skl(2,1)*c1122+
363 & skl(1,3)*skl(1,3)*skl(2,2)*skl(2,2)*c1122+
364 & skl(1,3)*skl(1,3)*skl(2,3)*skl(2,3)*c1111
366 & skl(2,1)*skl(2,1)*skl(2,1)*skl(2,1)*c1111+
367 & skl(2,1)*skl(2,1)*skl(2,2)*skl(2,2)*c1122+
368 & skl(2,1)*skl(2,1)*skl(2,3)*skl(2,3)*c1122+
369 & skl(2,1)*skl(2,2)*skl(2,1)*skl(2,2)*c1212+
370 & skl(2,1)*skl(2,2)*skl(2,2)*skl(2,1)*c1212+
371 & skl(2,1)*skl(2,3)*skl(2,1)*skl(2,3)*c1212+
372 & skl(2,1)*skl(2,3)*skl(2,3)*skl(2,1)*c1212+
373 & skl(2,2)*skl(2,1)*skl(2,1)*skl(2,2)*c1212+
374 & skl(2,2)*skl(2,1)*skl(2,2)*skl(2,1)*c1212+
375 & skl(2,2)*skl(2,2)*skl(2,1)*skl(2,1)*c1122+
376 & skl(2,2)*skl(2,2)*skl(2,2)*skl(2,2)*c1111+
377 & skl(2,2)*skl(2,2)*skl(2,3)*skl(2,3)*c1122+
378 & skl(2,2)*skl(2,3)*skl(2,2)*skl(2,3)*c1212+
379 & skl(2,2)*skl(2,3)*skl(2,3)*skl(2,2)*c1212+
380 & skl(2,3)*skl(2,1)*skl(2,1)*skl(2,3)*c1212+
381 & skl(2,3)*skl(2,1)*skl(2,3)*skl(2,1)*c1212+
382 & skl(2,3)*skl(2,2)*skl(2,2)*skl(2,3)*c1212+
383 & skl(2,3)*skl(2,2)*skl(2,3)*skl(2,2)*c1212+
384 & skl(2,3)*skl(2,3)*skl(2,1)*skl(2,1)*c1122+
385 & skl(2,3)*skl(2,3)*skl(2,2)*skl(2,2)*c1122+
386 & skl(2,3)*skl(2,3)*skl(2,3)*skl(2,3)*c1111
388 & skl(1,1)*skl(1,1)*skl(3,1)*skl(3,1)*c1111+
389 & skl(1,1)*skl(1,1)*skl(3,2)*skl(3,2)*c1122+
390 & skl(1,1)*skl(1,1)*skl(3,3)*skl(3,3)*c1122+
391 & skl(1,1)*skl(1,2)*skl(3,1)*skl(3,2)*c1212+
392 & skl(1,1)*skl(1,2)*skl(3,2)*skl(3,1)*c1212+
393 & skl(1,1)*skl(1,3)*skl(3,1)*skl(3,3)*c1212+
394 & skl(1,1)*skl(1,3)*skl(3,3)*skl(3,1)*c1212+
395 & skl(1,2)*skl(1,1)*skl(3,1)*skl(3,2)*c1212+
396 & skl(1,2)*skl(1,1)*skl(3,2)*skl(3,1)*c1212+
397 & skl(1,2)*skl(1,2)*skl(3,1)*skl(3,1)*c1122+
398 & skl(1,2)*skl(1,2)*skl(3,2)*skl(3,2)*c1111+
399 & skl(1,2)*skl(1,2)*skl(3,3)*skl(3,3)*c1122+
400 & skl(1,2)*skl(1,3)*skl(3,2)*skl(3,3)*c1212+
401 & skl(1,2)*skl(1,3)*skl(3,3)*skl(3,2)*c1212+
402 & skl(1,3)*skl(1,1)*skl(3,1)*skl(3,3)*c1212+
403 & skl(1,3)*skl(1,1)*skl(3,3)*skl(3,1)*c1212+
404 & skl(1,3)*skl(1,2)*skl(3,2)*skl(3,3)*c1212+
405 & skl(1,3)*skl(1,2)*skl(3,3)*skl(3,2)*c1212+
406 & skl(1,3)*skl(1,3)*skl(3,1)*skl(3,1)*c1122+
407 & skl(1,3)*skl(1,3)*skl(3,2)*skl(3,2)*c1122+
408 & skl(1,3)*skl(1,3)*skl(3,3)*skl(3,3)*c1111
410 & skl(2,1)*skl(2,1)*skl(3,1)*skl(3,1)*c1111+
411 & skl(2,1)*skl(2,1)*skl(3,2)*skl(3,2)*c1122+
412 & skl(2,1)*skl(2,1)*skl(3,3)*skl(3,3)*c1122+
413 & skl(2,1)*skl(2,2)*skl(3,1)*skl(3,2)*c1212+
414 & skl(2,1)*skl(2,2)*skl(3,2)*skl(3,1)*c1212+
415 & skl(2,1)*skl(2,3)*skl(3,1)*skl(3,3)*c1212+
416 & skl(2,1)*skl(2,3)*skl(3,3)*skl(3,1)*c1212+
417 & skl(2,2)*skl(2,1)*skl(3,1)*skl(3,2)*c1212+
418 & skl(2,2)*skl(2,1)*skl(3,2)*skl(3,1)*c1212+
419 & skl(2,2)*skl(2,2)*skl(3,1)*skl(3,1)*c1122+
420 & skl(2,2)*skl(2,2)*skl(3,2)*skl(3,2)*c1111+
421 & skl(2,2)*skl(2,2)*skl(3,3)*skl(3,3)*c1122+
422 & skl(2,2)*skl(2,3)*skl(3,2)*skl(3,3)*c1212+
423 & skl(2,2)*skl(2,3)*skl(3,3)*skl(3,2)*c1212+
424 & skl(2,3)*skl(2,1)*skl(3,1)*skl(3,3)*c1212+
425 & skl(2,3)*skl(2,1)*skl(3,3)*skl(3,1)*c1212+
426 & skl(2,3)*skl(2,2)*skl(3,2)*skl(3,3)*c1212+
427 & skl(2,3)*skl(2,2)*skl(3,3)*skl(3,2)*c1212+
428 & skl(2,3)*skl(2,3)*skl(3,1)*skl(3,1)*c1122+
429 & skl(2,3)*skl(2,3)*skl(3,2)*skl(3,2)*c1122+
430 & skl(2,3)*skl(2,3)*skl(3,3)*skl(3,3)*c1111
432 & skl(3,1)*skl(3,1)*skl(3,1)*skl(3,1)*c1111+
433 & skl(3,1)*skl(3,1)*skl(3,2)*skl(3,2)*c1122+
434 & skl(3,1)*skl(3,1)*skl(3,3)*skl(3,3)*c1122+
435 & skl(3,1)*skl(3,2)*skl(3,1)*skl(3,2)*c1212+
436 & skl(3,1)*skl(3,2)*skl(3,2)*skl(3,1)*c1212+
437 & skl(3,1)*skl(3,3)*skl(3,1)*skl(3,3)*c1212+
438 & skl(3,1)*skl(3,3)*skl(3,3)*skl(3,1)*c1212+
439 & skl(3,2)*skl(3,1)*skl(3,1)*skl(3,2)*c1212+
440 & skl(3,2)*skl(3,1)*skl(3,2)*skl(3,1)*c1212+
441 & skl(3,2)*skl(3,2)*skl(3,1)*skl(3,1)*c1122+
442 & skl(3,2)*skl(3,2)*skl(3,2)*skl(3,2)*c1111+
443 & skl(3,2)*skl(3,2)*skl(3,3)*skl(3,3)*c1122+
444 & skl(3,2)*skl(3,3)*skl(3,2)*skl(3,3)*c1212+
445 & skl(3,2)*skl(3,3)*skl(3,3)*skl(3,2)*c1212+
446 & skl(3,3)*skl(3,1)*skl(3,1)*skl(3,3)*c1212+
447 & skl(3,3)*skl(3,1)*skl(3,3)*skl(3,1)*c1212+
448 & skl(3,3)*skl(3,2)*skl(3,2)*skl(3,3)*c1212+
449 & skl(3,3)*skl(3,2)*skl(3,3)*skl(3,2)*c1212+
450 & skl(3,3)*skl(3,3)*skl(3,1)*skl(3,1)*c1122+
451 & skl(3,3)*skl(3,3)*skl(3,2)*skl(3,2)*c1122+
452 & skl(3,3)*skl(3,3)*skl(3,3)*skl(3,3)*c1111
454 & skl(1,1)*skl(1,1)*skl(1,1)*skl(2,1)*c1111+
455 & skl(1,1)*skl(1,1)*skl(1,2)*skl(2,2)*c1122+
456 & skl(1,1)*skl(1,1)*skl(1,3)*skl(2,3)*c1122+
457 & skl(1,1)*skl(1,2)*skl(1,1)*skl(2,2)*c1212+
458 & skl(1,1)*skl(1,2)*skl(1,2)*skl(2,1)*c1212+
459 & skl(1,1)*skl(1,3)*skl(1,1)*skl(2,3)*c1212+
460 & skl(1,1)*skl(1,3)*skl(1,3)*skl(2,1)*c1212+
461 & skl(1,2)*skl(1,1)*skl(1,1)*skl(2,2)*c1212+
462 & skl(1,2)*skl(1,1)*skl(1,2)*skl(2,1)*c1212+
463 & skl(1,2)*skl(1,2)*skl(1,1)*skl(2,1)*c1122+
464 & skl(1,2)*skl(1,2)*skl(1,2)*skl(2,2)*c1111+
465 & skl(1,2)*skl(1,2)*skl(1,3)*skl(2,3)*c1122+
466 & skl(1,2)*skl(1,3)*skl(1,2)*skl(2,3)*c1212+
467 & skl(1,2)*skl(1,3)*skl(1,3)*skl(2,2)*c1212+
468 & skl(1,3)*skl(1,1)*skl(1,1)*skl(2,3)*c1212+
469 & skl(1,3)*skl(1,1)*skl(1,3)*skl(2,1)*c1212+
470 & skl(1,3)*skl(1,2)*skl(1,2)*skl(2,3)*c1212+
471 & skl(1,3)*skl(1,2)*skl(1,3)*skl(2,2)*c1212+
472 & skl(1,3)*skl(1,3)*skl(1,1)*skl(2,1)*c1122+
473 & skl(1,3)*skl(1,3)*skl(1,2)*skl(2,2)*c1122+
474 & skl(1,3)*skl(1,3)*skl(1,3)*skl(2,3)*c1111
476 & skl(2,1)*skl(2,1)*skl(1,1)*skl(2,1)*c1111+
477 & skl(2,1)*skl(2,1)*skl(1,2)*skl(2,2)*c1122+
478 & skl(2,1)*skl(2,1)*skl(1,3)*skl(2,3)*c1122+
479 & skl(2,1)*skl(2,2)*skl(1,1)*skl(2,2)*c1212+
480 & skl(2,1)*skl(2,2)*skl(1,2)*skl(2,1)*c1212+
481 & skl(2,1)*skl(2,3)*skl(1,1)*skl(2,3)*c1212+
482 & skl(2,1)*skl(2,3)*skl(1,3)*skl(2,1)*c1212+
483 & skl(2,2)*skl(2,1)*skl(1,1)*skl(2,2)*c1212+
484 & skl(2,2)*skl(2,1)*skl(1,2)*skl(2,1)*c1212+
485 & skl(2,2)*skl(2,2)*skl(1,1)*skl(2,1)*c1122+
486 & skl(2,2)*skl(2,2)*skl(1,2)*skl(2,2)*c1111+
487 & skl(2,2)*skl(2,2)*skl(1,3)*skl(2,3)*c1122+
488 & skl(2,2)*skl(2,3)*skl(1,2)*skl(2,3)*c1212+
489 & skl(2,2)*skl(2,3)*skl(1,3)*skl(2,2)*c1212+
490 & skl(2,3)*skl(2,1)*skl(1,1)*skl(2,3)*c1212+
491 & skl(2,3)*skl(2,1)*skl(1,3)*skl(2,1)*c1212+
492 & skl(2,3)*skl(2,2)*skl(1,2)*skl(2,3)*c1212+
493 & skl(2,3)*skl(2,2)*skl(1,3)*skl(2,2)*c1212+
494 & skl(2,3)*skl(2,3)*skl(1,1)*skl(2,1)*c1122+
495 & skl(2,3)*skl(2,3)*skl(1,2)*skl(2,2)*c1122+
496 & skl(2,3)*skl(2,3)*skl(1,3)*skl(2,3)*c1111
498 & skl(3,1)*skl(3,1)*skl(1,1)*skl(2,1)*c1111+
499 & skl(3,1)*skl(3,1)*skl(1,2)*skl(2,2)*c1122+
500 & skl(3,1)*skl(3,1)*skl(1,3)*skl(2,3)*c1122+
501 & skl(3,1)*skl(3,2)*skl(1,1)*skl(2,2)*c1212+
502 & skl(3,1)*skl(3,2)*skl(1,2)*skl(2,1)*c1212+
503 & skl(3,1)*skl(3,3)*skl(1,1)*skl(2,3)*c1212+
504 & skl(3,1)*skl(3,3)*skl(1,3)*skl(2,1)*c1212+
505 & skl(3,2)*skl(3,1)*skl(1,1)*skl(2,2)*c1212+
506 & skl(3,2)*skl(3,1)*skl(1,2)*skl(2,1)*c1212+
507 & skl(3,2)*skl(3,2)*skl(1,1)*skl(2,1)*c1122+
508 & skl(3,2)*skl(3,2)*skl(1,2)*skl(2,2)*c1111+
509 & skl(3,2)*skl(3,2)*skl(1,3)*skl(2,3)*c1122+
510 & skl(3,2)*skl(3,3)*skl(1,2)*skl(2,3)*c1212+
511 & skl(3,2)*skl(3,3)*skl(1,3)*skl(2,2)*c1212+
512 & skl(3,3)*skl(3,1)*skl(1,1)*skl(2,3)*c1212+
513 & skl(3,3)*skl(3,1)*skl(1,3)*skl(2,1)*c1212+
514 & skl(3,3)*skl(3,2)*skl(1,2)*skl(2,3)*c1212+
515 & skl(3,3)*skl(3,2)*skl(1,3)*skl(2,2)*c1212+
516 & skl(3,3)*skl(3,3)*skl(1,1)*skl(2,1)*c1122+
517 & skl(3,3)*skl(3,3)*skl(1,2)*skl(2,2)*c1122+
518 & skl(3,3)*skl(3,3)*skl(1,3)*skl(2,3)*c1111
520 & skl(1,1)*skl(2,1)*skl(1,1)*skl(2,1)*c1111+
521 & skl(1,1)*skl(2,1)*skl(1,2)*skl(2,2)*c1122+
522 & skl(1,1)*skl(2,1)*skl(1,3)*skl(2,3)*c1122+
523 & skl(1,1)*skl(2,2)*skl(1,1)*skl(2,2)*c1212+
524 & skl(1,1)*skl(2,2)*skl(1,2)*skl(2,1)*c1212+
525 & skl(1,1)*skl(2,3)*skl(1,1)*skl(2,3)*c1212+
526 & skl(1,1)*skl(2,3)*skl(1,3)*skl(2,1)*c1212+
527 & skl(1,2)*skl(2,1)*skl(1,1)*skl(2,2)*c1212+
528 & skl(1,2)*skl(2,1)*skl(1,2)*skl(2,1)*c1212+
529 & skl(1,2)*skl(2,2)*skl(1,1)*skl(2,1)*c1122+
530 & skl(1,2)*skl(2,2)*skl(1,2)*skl(2,2)*c1111+
531 & skl(1,2)*skl(2,2)*skl(1,3)*skl(2,3)*c1122+
532 & skl(1,2)*skl(2,3)*skl(1,2)*skl(2,3)*c1212+
533 & skl(1,2)*skl(2,3)*skl(1,3)*skl(2,2)*c1212+
534 & skl(1,3)*skl(2,1)*skl(1,1)*skl(2,3)*c1212+
535 & skl(1,3)*skl(2,1)*skl(1,3)*skl(2,1)*c1212+
536 & skl(1,3)*skl(2,2)*skl(1,2)*skl(2,3)*c1212+
537 & skl(1,3)*skl(2,2)*skl(1,3)*skl(2,2)*c1212+
538 & skl(1,3)*skl(2,3)*skl(1,1)*skl(2,1)*c1122+
539 & skl(1,3)*skl(2,3)*skl(1,2)*skl(2,2)*c1122+
540 & skl(1,3)*skl(2,3)*skl(1,3)*skl(2,3)*c1111
542 & skl(1,1)*skl(1,1)*skl(1,1)*skl(3,1)*c1111+
543 & skl(1,1)*skl(1,1)*skl(1,2)*skl(3,2)*c1122+
544 & skl(1,1)*skl(1,1)*skl(1,3)*skl(3,3)*c1122+
545 & skl(1,1)*skl(1,2)*skl(1,1)*skl(3,2)*c1212+
546 & skl(1,1)*skl(1,2)*skl(1,2)*skl(3,1)*c1212+
547 & skl(1,1)*skl(1,3)*skl(1,1)*skl(3,3)*c1212+
548 & skl(1,1)*skl(1,3)*skl(1,3)*skl(3,1)*c1212+
549 & skl(1,2)*skl(1,1)*skl(1,1)*skl(3,2)*c1212+
550 & skl(1,2)*skl(1,1)*skl(1,2)*skl(3,1)*c1212+
551 & skl(1,2)*skl(1,2)*skl(1,1)*skl(3,1)*c1122+
552 & skl(1,2)*skl(1,2)*skl(1,2)*skl(3,2)*c1111+
553 & skl(1,2)*skl(1,2)*skl(1,3)*skl(3,3)*c1122+
554 & skl(1,2)*skl(1,3)*skl(1,2)*skl(3,3)*c1212+
555 & skl(1,2)*skl(1,3)*skl(1,3)*skl(3,2)*c1212+
556 & skl(1,3)*skl(1,1)*skl(1,1)*skl(3,3)*c1212+
557 & skl(1,3)*skl(1,1)*skl(1,3)*skl(3,1)*c1212+
558 & skl(1,3)*skl(1,2)*skl(1,2)*skl(3,3)*c1212+
559 & skl(1,3)*skl(1,2)*skl(1,3)*skl(3,2)*c1212+
560 & skl(1,3)*skl(1,3)*skl(1,1)*skl(3,1)*c1122+
561 & skl(1,3)*skl(1,3)*skl(1,2)*skl(3,2)*c1122+
562 & skl(1,3)*skl(1,3)*skl(1,3)*skl(3,3)*c1111
564 & skl(2,1)*skl(2,1)*skl(1,1)*skl(3,1)*c1111+
565 & skl(2,1)*skl(2,1)*skl(1,2)*skl(3,2)*c1122+
566 & skl(2,1)*skl(2,1)*skl(1,3)*skl(3,3)*c1122+
567 & skl(2,1)*skl(2,2)*skl(1,1)*skl(3,2)*c1212+
568 & skl(2,1)*skl(2,2)*skl(1,2)*skl(3,1)*c1212+
569 & skl(2,1)*skl(2,3)*skl(1,1)*skl(3,3)*c1212+
570 & skl(2,1)*skl(2,3)*skl(1,3)*skl(3,1)*c1212+
571 & skl(2,2)*skl(2,1)*skl(1,1)*skl(3,2)*c1212+
572 & skl(2,2)*skl(2,1)*skl(1,2)*skl(3,1)*c1212+
573 & skl(2,2)*skl(2,2)*skl(1,1)*skl(3,1)*c1122+
574 & skl(2,2)*skl(2,2)*skl(1,2)*skl(3,2)*c1111+
575 & skl(2,2)*skl(2,2)*skl(1,3)*skl(3,3)*c1122+
576 & skl(2,2)*skl(2,3)*skl(1,2)*skl(3,3)*c1212+
577 & skl(2,2)*skl(2,3)*skl(1,3)*skl(3,2)*c1212+
578 & skl(2,3)*skl(2,1)*skl(1,1)*skl(3,3)*c1212+
579 & skl(2,3)*skl(2,1)*skl(1,3)*skl(3,1)*c1212+
580 & skl(2,3)*skl(2,2)*skl(1,2)*skl(3,3)*c1212+
581 & skl(2,3)*skl(2,2)*skl(1,3)*skl(3,2)*c1212+
582 & skl(2,3)*skl(2,3)*skl(1,1)*skl(3,1)*c1122+
583 & skl(2,3)*skl(2,3)*skl(1,2)*skl(3,2)*c1122+
584 & skl(2,3)*skl(2,3)*skl(1,3)*skl(3,3)*c1111
586 & skl(3,1)*skl(3,1)*skl(1,1)*skl(3,1)*c1111+
587 & skl(3,1)*skl(3,1)*skl(1,2)*skl(3,2)*c1122+
588 & skl(3,1)*skl(3,1)*skl(1,3)*skl(3,3)*c1122+
589 & skl(3,1)*skl(3,2)*skl(1,1)*skl(3,2)*c1212+
590 & skl(3,1)*skl(3,2)*skl(1,2)*skl(3,1)*c1212+
591 & skl(3,1)*skl(3,3)*skl(1,1)*skl(3,3)*c1212+
592 & skl(3,1)*skl(3,3)*skl(1,3)*skl(3,1)*c1212+
593 & skl(3,2)*skl(3,1)*skl(1,1)*skl(3,2)*c1212+
594 & skl(3,2)*skl(3,1)*skl(1,2)*skl(3,1)*c1212+
595 & skl(3,2)*skl(3,2)*skl(1,1)*skl(3,1)*c1122+
596 & skl(3,2)*skl(3,2)*skl(1,2)*skl(3,2)*c1111+
597 & skl(3,2)*skl(3,2)*skl(1,3)*skl(3,3)*c1122+
598 & skl(3,2)*skl(3,3)*skl(1,2)*skl(3,3)*c1212+
599 & skl(3,2)*skl(3,3)*skl(1,3)*skl(3,2)*c1212+
600 & skl(3,3)*skl(3,1)*skl(1,1)*skl(3,3)*c1212+
601 & skl(3,3)*skl(3,1)*skl(1,3)*skl(3,1)*c1212+
602 & skl(3,3)*skl(3,2)*skl(1,2)*skl(3,3)*c1212+
603 & skl(3,3)*skl(3,2)*skl(1,3)*skl(3,2)*c1212+
604 & skl(3,3)*skl(3,3)*skl(1,1)*skl(3,1)*c1122+
605 & skl(3,3)*skl(3,3)*skl(1,2)*skl(3,2)*c1122+
606 & skl(3,3)*skl(3,3)*skl(1,3)*skl(3,3)*c1111
608 & skl(1,1)*skl(2,1)*skl(1,1)*skl(3,1)*c1111+
609 & skl(1,1)*skl(2,1)*skl(1,2)*skl(3,2)*c1122+
610 & skl(1,1)*skl(2,1)*skl(1,3)*skl(3,3)*c1122+
611 & skl(1,1)*skl(2,2)*skl(1,1)*skl(3,2)*c1212+
612 & skl(1,1)*skl(2,2)*skl(1,2)*skl(3,1)*c1212+
613 & skl(1,1)*skl(2,3)*skl(1,1)*skl(3,3)*c1212+
614 & skl(1,1)*skl(2,3)*skl(1,3)*skl(3,1)*c1212+
615 & skl(1,2)*skl(2,1)*skl(1,1)*skl(3,2)*c1212+
616 & skl(1,2)*skl(2,1)*skl(1,2)*skl(3,1)*c1212+
617 & skl(1,2)*skl(2,2)*skl(1,1)*skl(3,1)*c1122+
618 & skl(1,2)*skl(2,2)*skl(1,2)*skl(3,2)*c1111+
619 & skl(1,2)*skl(2,2)*skl(1,3)*skl(3,3)*c1122+
620 & skl(1,2)*skl(2,3)*skl(1,2)*skl(3,3)*c1212+
621 & skl(1,2)*skl(2,3)*skl(1,3)*skl(3,2)*c1212+
622 & skl(1,3)*skl(2,1)*skl(1,1)*skl(3,3)*c1212+
623 & skl(1,3)*skl(2,1)*skl(1,3)*skl(3,1)*c1212+
624 & skl(1,3)*skl(2,2)*skl(1,2)*skl(3,3)*c1212+
625 & skl(1,3)*skl(2,2)*skl(1,3)*skl(3,2)*c1212+
626 & skl(1,3)*skl(2,3)*skl(1,1)*skl(3,1)*c1122+
627 & skl(1,3)*skl(2,3)*skl(1,2)*skl(3,2)*c1122+
628 & skl(1,3)*skl(2,3)*skl(1,3)*skl(3,3)*c1111
630 & skl(1,1)*skl(3,1)*skl(1,1)*skl(3,1)*c1111+
631 & skl(1,1)*skl(3,1)*skl(1,2)*skl(3,2)*c1122+
632 & skl(1,1)*skl(3,1)*skl(1,3)*skl(3,3)*c1122+
633 & skl(1,1)*skl(3,2)*skl(1,1)*skl(3,2)*c1212+
634 & skl(1,1)*skl(3,2)*skl(1,2)*skl(3,1)*c1212+
635 & skl(1,1)*skl(3,3)*skl(1,1)*skl(3,3)*c1212+
636 & skl(1,1)*skl(3,3)*skl(1,3)*skl(3,1)*c1212+
637 & skl(1,2)*skl(3,1)*skl(1,1)*skl(3,2)*c1212+
638 & skl(1,2)*skl(3,1)*skl(1,2)*skl(3,1)*c1212+
639 & skl(1,2)*skl(3,2)*skl(1,1)*skl(3,1)*c1122+
640 & skl(1,2)*skl(3,2)*skl(1,2)*skl(3,2)*c1111+
641 & skl(1,2)*skl(3,2)*skl(1,3)*skl(3,3)*c1122+
642 & skl(1,2)*skl(3,3)*skl(1,2)*skl(3,3)*c1212+
643 & skl(1,2)*skl(3,3)*skl(1,3)*skl(3,2)*c1212+
644 & skl(1,3)*skl(3,1)*skl(1,1)*skl(3,3)*c1212+
645 & skl(1,3)*skl(3,1)*skl(1,3)*skl(3,1)*c1212+
646 & skl(1,3)*skl(3,2)*skl(1,2)*skl(3,3)*c1212+
647 & skl(1,3)*skl(3,2)*skl(1,3)*skl(3,2)*c1212+
648 & skl(1,3)*skl(3,3)*skl(1,1)*skl(3,1)*c1122+
649 & skl(1,3)*skl(3,3)*skl(1,2)*skl(3,2)*c1122+
650 & skl(1,3)*skl(3,3)*skl(1,3)*skl(3,3)*c1111
652 & skl(1,1)*skl(1,1)*skl(2,1)*skl(3,1)*c1111+
653 & skl(1,1)*skl(1,1)*skl(2,2)*skl(3,2)*c1122+
654 & skl(1,1)*skl(1,1)*skl(2,3)*skl(3,3)*c1122+
655 & skl(1,1)*skl(1,2)*skl(2,1)*skl(3,2)*c1212+
656 & skl(1,1)*skl(1,2)*skl(2,2)*skl(3,1)*c1212+
657 & skl(1,1)*skl(1,3)*skl(2,1)*skl(3,3)*c1212+
658 & skl(1,1)*skl(1,3)*skl(2,3)*skl(3,1)*c1212+
659 & skl(1,2)*skl(1,1)*skl(2,1)*skl(3,2)*c1212+
660 & skl(1,2)*skl(1,1)*skl(2,2)*skl(3,1)*c1212+
661 & skl(1,2)*skl(1,2)*skl(2,1)*skl(3,1)*c1122+
662 & skl(1,2)*skl(1,2)*skl(2,2)*skl(3,2)*c1111+
663 & skl(1,2)*skl(1,2)*skl(2,3)*skl(3,3)*c1122+
664 & skl(1,2)*skl(1,3)*skl(2,2)*skl(3,3)*c1212+
665 & skl(1,2)*skl(1,3)*skl(2,3)*skl(3,2)*c1212+
666 & skl(1,3)*skl(1,1)*skl(2,1)*skl(3,3)*c1212+
667 & skl(1,3)*skl(1,1)*skl(2,3)*skl(3,1)*c1212+
668 & skl(1,3)*skl(1,2)*skl(2,2)*skl(3,3)*c1212+
669 & skl(1,3)*skl(1,2)*skl(2,3)*skl(3,2)*c1212+
670 & skl(1,3)*skl(1,3)*skl(2,1)*skl(3,1)*c1122+
671 & skl(1,3)*skl(1,3)*skl(2,2)*skl(3,2)*c1122+
672 & skl(1,3)*skl(1,3)*skl(2,3)*skl(3,3)*c1111
674 & skl(2,1)*skl(2,1)*skl(2,1)*skl(3,1)*c1111+
675 & skl(2,1)*skl(2,1)*skl(2,2)*skl(3,2)*c1122+
676 & skl(2,1)*skl(2,1)*skl(2,3)*skl(3,3)*c1122+
677 & skl(2,1)*skl(2,2)*skl(2,1)*skl(3,2)*c1212+
678 & skl(2,1)*skl(2,2)*skl(2,2)*skl(3,1)*c1212+
679 & skl(2,1)*skl(2,3)*skl(2,1)*skl(3,3)*c1212+
680 & skl(2,1)*skl(2,3)*skl(2,3)*skl(3,1)*c1212+
681 & skl(2,2)*skl(2,1)*skl(2,1)*skl(3,2)*c1212+
682 & skl(2,2)*skl(2,1)*skl(2,2)*skl(3,1)*c1212+
683 & skl(2,2)*skl(2,2)*skl(2,1)*skl(3,1)*c1122+
684 & skl(2,2)*skl(2,2)*skl(2,2)*skl(3,2)*c1111+
685 & skl(2,2)*skl(2,2)*skl(2,3)*skl(3,3)*c1122+
686 & skl(2,2)*skl(2,3)*skl(2,2)*skl(3,3)*c1212+
687 & skl(2,2)*skl(2,3)*skl(2,3)*skl(3,2)*c1212+
688 & skl(2,3)*skl(2,1)*skl(2,1)*skl(3,3)*c1212+
689 & skl(2,3)*skl(2,1)*skl(2,3)*skl(3,1)*c1212+
690 & skl(2,3)*skl(2,2)*skl(2,2)*skl(3,3)*c1212+
691 & skl(2,3)*skl(2,2)*skl(2,3)*skl(3,2)*c1212+
692 & skl(2,3)*skl(2,3)*skl(2,1)*skl(3,1)*c1122+
693 & skl(2,3)*skl(2,3)*skl(2,2)*skl(3,2)*c1122+
694 & skl(2,3)*skl(2,3)*skl(2,3)*skl(3,3)*c1111
696 & skl(3,1)*skl(3,1)*skl(2,1)*skl(3,1)*c1111+
697 & skl(3,1)*skl(3,1)*skl(2,2)*skl(3,2)*c1122+
698 & skl(3,1)*skl(3,1)*skl(2,3)*skl(3,3)*c1122+
699 & skl(3,1)*skl(3,2)*skl(2,1)*skl(3,2)*c1212+
700 & skl(3,1)*skl(3,2)*skl(2,2)*skl(3,1)*c1212+
701 & skl(3,1)*skl(3,3)*skl(2,1)*skl(3,3)*c1212+
702 & skl(3,1)*skl(3,3)*skl(2,3)*skl(3,1)*c1212+
703 & skl(3,2)*skl(3,1)*skl(2,1)*skl(3,2)*c1212+
704 & skl(3,2)*skl(3,1)*skl(2,2)*skl(3,1)*c1212+
705 & skl(3,2)*skl(3,2)*skl(2,1)*skl(3,1)*c1122+
706 & skl(3,2)*skl(3,2)*skl(2,2)*skl(3,2)*c1111+
707 & skl(3,2)*skl(3,2)*skl(2,3)*skl(3,3)*c1122+
708 & skl(3,2)*skl(3,3)*skl(2,2)*skl(3,3)*c1212+
709 & skl(3,2)*skl(3,3)*skl(2,3)*skl(3,2)*c1212+
710 & skl(3,3)*skl(3,1)*skl(2,1)*skl(3,3)*c1212+
711 & skl(3,3)*skl(3,1)*skl(2,3)*skl(3,1)*c1212+
712 & skl(3,3)*skl(3,2)*skl(2,2)*skl(3,3)*c1212+
713 & skl(3,3)*skl(3,2)*skl(2,3)*skl(3,2)*c1212+
714 & skl(3,3)*skl(3,3)*skl(2,1)*skl(3,1)*c1122+
715 & skl(3,3)*skl(3,3)*skl(2,2)*skl(3,2)*c1122+
716 & skl(3,3)*skl(3,3)*skl(2,3)*skl(3,3)*c1111
718 & skl(1,1)*skl(2,1)*skl(2,1)*skl(3,1)*c1111+
719 & skl(1,1)*skl(2,1)*skl(2,2)*skl(3,2)*c1122+
720 & skl(1,1)*skl(2,1)*skl(2,3)*skl(3,3)*c1122+
721 & skl(1,1)*skl(2,2)*skl(2,1)*skl(3,2)*c1212+
722 & skl(1,1)*skl(2,2)*skl(2,2)*skl(3,1)*c1212+
723 & skl(1,1)*skl(2,3)*skl(2,1)*skl(3,3)*c1212+
724 & skl(1,1)*skl(2,3)*skl(2,3)*skl(3,1)*c1212+
725 & skl(1,2)*skl(2,1)*skl(2,1)*skl(3,2)*c1212+
726 & skl(1,2)*skl(2,1)*skl(2,2)*skl(3,1)*c1212+
727 & skl(1,2)*skl(2,2)*skl(2,1)*skl(3,1)*c1122+
728 & skl(1,2)*skl(2,2)*skl(2,2)*skl(3,2)*c1111+
729 & skl(1,2)*skl(2,2)*skl(2,3)*skl(3,3)*c1122+
730 & skl(1,2)*skl(2,3)*skl(2,2)*skl(3,3)*c1212+
731 & skl(1,2)*skl(2,3)*skl(2,3)*skl(3,2)*c1212+
732 & skl(1,3)*skl(2,1)*skl(2,1)*skl(3,3)*c1212+
733 & skl(1,3)*skl(2,1)*skl(2,3)*skl(3,1)*c1212+
734 & skl(1,3)*skl(2,2)*skl(2,2)*skl(3,3)*c1212+
735 & skl(1,3)*skl(2,2)*skl(2,3)*skl(3,2)*c1212+
736 & skl(1,3)*skl(2,3)*skl(2,1)*skl(3,1)*c1122+
737 & skl(1,3)*skl(2,3)*skl(2,2)*skl(3,2)*c1122+
738 & skl(1,3)*skl(2,3)*skl(2,3)*skl(3,3)*c1111
740 & skl(1,1)*skl(3,1)*skl(2,1)*skl(3,1)*c1111+
741 & skl(1,1)*skl(3,1)*skl(2,2)*skl(3,2)*c1122+
742 & skl(1,1)*skl(3,1)*skl(2,3)*skl(3,3)*c1122+
743 & skl(1,1)*skl(3,2)*skl(2,1)*skl(3,2)*c1212+
744 & skl(1,1)*skl(3,2)*skl(2,2)*skl(3,1)*c1212+
745 & skl(1,1)*skl(3,3)*skl(2,1)*skl(3,3)*c1212+
746 & skl(1,1)*skl(3,3)*skl(2,3)*skl(3,1)*c1212+
747 & skl(1,2)*skl(3,1)*skl(2,1)*skl(3,2)*c1212+
748 & skl(1,2)*skl(3,1)*skl(2,2)*skl(3,1)*c1212+
749 & skl(1,2)*skl(3,2)*skl(2,1)*skl(3,1)*c1122+
750 & skl(1,2)*skl(3,2)*skl(2,2)*skl(3,2)*c1111+
751 & skl(1,2)*skl(3,2)*skl(2,3)*skl(3,3)*c1122+
752 & skl(1,2)*skl(3,3)*skl(2,2)*skl(3,3)*c1212+
753 & skl(1,2)*skl(3,3)*skl(2,3)*skl(3,2)*c1212+
754 & skl(1,3)*skl(3,1)*skl(2,1)*skl(3,3)*c1212+
755 & skl(1,3)*skl(3,1)*skl(2,3)*skl(3,1)*c1212+
756 & skl(1,3)*skl(3,2)*skl(2,2)*skl(3,3)*c1212+
757 & skl(1,3)*skl(3,2)*skl(2,3)*skl(3,2)*c1212+
758 & skl(1,3)*skl(3,3)*skl(2,1)*skl(3,1)*c1122+
759 & skl(1,3)*skl(3,3)*skl(2,2)*skl(3,2)*c1122+
760 & skl(1,3)*skl(3,3)*skl(2,3)*skl(3,3)*c1111
762 & skl(2,1)*skl(3,1)*skl(2,1)*skl(3,1)*c1111+
763 & skl(2,1)*skl(3,1)*skl(2,2)*skl(3,2)*c1122+
764 & skl(2,1)*skl(3,1)*skl(2,3)*skl(3,3)*c1122+
765 & skl(2,1)*skl(3,2)*skl(2,1)*skl(3,2)*c1212+
766 & skl(2,1)*skl(3,2)*skl(2,2)*skl(3,1)*c1212+
767 & skl(2,1)*skl(3,3)*skl(2,1)*skl(3,3)*c1212+
768 & skl(2,1)*skl(3,3)*skl(2,3)*skl(3,1)*c1212+
769 & skl(2,2)*skl(3,1)*skl(2,1)*skl(3,2)*c1212+
770 & skl(2,2)*skl(3,1)*skl(2,2)*skl(3,1)*c1212+
771 & skl(2,2)*skl(3,2)*skl(2,1)*skl(3,1)*c1122+
772 & skl(2,2)*skl(3,2)*skl(2,2)*skl(3,2)*c1111+
773 & skl(2,2)*skl(3,2)*skl(2,3)*skl(3,3)*c1122+
774 & skl(2,2)*skl(3,3)*skl(2,2)*skl(3,3)*c1212+
775 & skl(2,2)*skl(3,3)*skl(2,3)*skl(3,2)*c1212+
776 & skl(2,3)*skl(3,1)*skl(2,1)*skl(3,3)*c1212+
777 & skl(2,3)*skl(3,1)*skl(2,3)*skl(3,1)*c1212+
778 & skl(2,3)*skl(3,2)*skl(2,2)*skl(3,3)*c1212+
779 & skl(2,3)*skl(3,2)*skl(2,3)*skl(3,2)*c1212+
780 & skl(2,3)*skl(3,3)*skl(2,1)*skl(3,1)*c1122+
781 & skl(2,3)*skl(3,3)*skl(2,2)*skl(3,2)*c1122+
782 & skl(2,3)*skl(3,3)*skl(2,3)*skl(3,3)*c1111
786 ep0(i)=xstateini(i,iint,iel)
789 q1(i)=xstateini(6+i,iint,iel)
790 q2(i)=xstateini(24+i,iint,iel)
791 dg0(i)=xstateini(42+i,iint,iel)
822 delta(i)=elconloc(18)
831 al10(i)=-q1(i)/(b(i)*q(i))
838 stri(1)=elas(1)*ee(1)+elas(2)*ee(2)+elas(4)*ee(3)+
839 & 2.d0*(elas(7)*ee(4)+elas(11)*ee(5)+elas(16)*ee(6))
841 stri(2)=elas(2)*ee(1)+elas(3)*ee(2)+elas(5)*ee(3)+
842 & 2.d0*(elas(8)*ee(4)+elas(12)*ee(5)+elas(17)*ee(6))
844 stri(3)=elas(4)*ee(1)+elas(5)*ee(2)+elas(6)*ee(3)+
845 & 2.d0*(elas(9)*ee(4)+elas(13)*ee(5)+elas(18)*ee(6))
847 stri(4)=elas(7)*ee(1)+elas(8)*ee(2)+elas(9)*ee(3)+
848 & 2.d0*(elas(10)*ee(4)+elas(14)*ee(5)+elas(19)*ee(6))
850 stri(5)=elas(11)*ee(1)+elas(12)*ee(2)+elas(13)*ee(3)+
851 & 2.d0*(elas(14)*ee(4)+elas(15)*ee(5)+elas(20)*ee(6))
853 stri(6)=elas(16)*ee(1)+elas(17)*ee(2)+elas(18)*ee(3)+
854 & 2.d0*(elas(19)*ee(4)+elas(20)*ee(5)+elas(21)*ee(6))
857 stri(1)=c1111*ee(1)+c1122*(ee(2)+ee(3))-beta(1)
858 stri(2)=c1111*ee(2)+c1122*(ee(1)+ee(3))-beta(2)
859 stri(3)=c1111*ee(3)+c1122*(ee(1)+ee(2))-beta(3)
860 stri(4)=2.d0*c1212*ee(4)-beta(4)
861 stri(5)=2.d0*c1212*ee(5)-beta(5)
862 stri(6)=2.d0*c1212*ee(6)-beta(6)
868 sg(i)=xm(1,i)*stri(1)+xm(2,i)*stri(2)+xm(3,i)*stri(3)+
869 & 2.d0*(xm(4,i)*stri(4)+xm(5,i)*stri(5)+xm(6,i)*stri(6))+q2(i)
875 htri(i)=dabs(sg(i))-r0(i)
877 htri(i)=htri(i)+h(i,j)*q1(j)
885 if(htri(i).gt.0.d0)
then 892 if((iplas.eq.0).or.(ielas.eq.1))
then 945 if(htri(i).gt.0.d0)
then 968 if(icounter.gt.100)
then 969 write(*,*)
'*ERROR in umat_single_crystal: no convergence' 982 q1(i)=-b(i)*q(i)*al1(i)
989 stri(1)=elas(1)*ee(1)+elas(2)*ee(2)+elas(4)*ee(3)+
990 & 2.d0*(elas(7)*ee(4)+elas(11)*ee(5)+elas(16)*ee(6))
992 stri(2)=elas(2)*ee(1)+elas(3)*ee(2)+elas(5)*ee(3)+
993 & 2.d0*(elas(8)*ee(4)+elas(12)*ee(5)+elas(17)*ee(6))
995 stri(3)=elas(4)*ee(1)+elas(5)*ee(2)+elas(6)*ee(3)+
996 & 2.d0*(elas(9)*ee(4)+elas(13)*ee(5)+elas(18)*ee(6))
998 stri(4)=elas(7)*ee(1)+elas(8)*ee(2)+elas(9)*ee(3)+
999 & 2.d0*(elas(10)*ee(4)+elas(14)*ee(5)+elas(19)*ee(6))
1001 stri(5)=elas(11)*ee(1)+elas(12)*ee(2)+elas(13)*ee(3)+
1002 & 2.d0*(elas(14)*ee(4)+elas(15)*ee(5)+elas(20)*ee(6))
1004 stri(6)=elas(16)*ee(1)+elas(17)*ee(2)+elas(18)*ee(3)+
1005 & 2.d0*(elas(19)*ee(4)+elas(20)*ee(5)+elas(21)*ee(6))
1008 stri(1)=c1111*ee(1)+c1122*(ee(2)+ee(3))-beta(1)
1009 stri(2)=c1111*ee(2)+c1122*(ee(1)+ee(3))-beta(2)
1010 stri(3)=c1111*ee(3)+c1122*(ee(1)+ee(2))-beta(3)
1011 stri(4)=2.d0*c1212*ee(4)-beta(4)
1012 stri(5)=2.d0*c1212*ee(5)-beta(5)
1013 stri(6)=2.d0*c1212*ee(6)-beta(6)
1019 sg(i)=xm(1,i)*stri(1)+xm(2,i)*stri(2)+xm(3,i)*stri(3)+
1020 & 2.d0*(xm(4,i)*stri(4)+xm(5,i)*stri(5)+xm(6,i)*stri(6))
1027 htri(i)=dabs(sg(i))-r0(i)-ck(i)*(dg(i)/dtime)**(1.d0/cn(i))
1029 htri(i)=htri(i)+h(i,j)*q1(j)
1036 if(sg(i).lt.0.d0)
then 1046 cphi(i)=phi(i)+(1.d0-phi(i))*exp(-delta(i)*(dg0(i)+dg(i)))
1059 r(5+2*i)=al10(i)-al1(i)
1060 r(6+2*i)=al20(i)-al2(i)
1065 r(j)=r(j)+xm(j,i)*sg(i)*dg(i)
1067 r(5+2*i)=r(5+2*i)+(1.d0-b(i)*al1(i))*dg(i)
1068 r(6+2*i)=r(6+2*i)+(cphi(i)*sg(i)-d(i)*al2(i))*dg(i)
1077 if(htri(i).gt.1.d-5)
then 1083 if(convergence.eq.1)
then 1090 dd=dd+r(5+2*i)*r(5+2*i)+r(6+2*i)*r(6+2*i)
1093 if(dd.gt.1.d-10)
then 1104 if(iorien.gt.0)
then 1105 xmc(1,i)=elas(1)*xm(1,i)+elas(2)*xm(2,i)+
1106 & elas(4)*xm(3,i)+2.d0*(elas(7)*xm(4,i)+
1107 & elas(11)*xm(5,i)+elas(16)*xm(6,i))
1108 xmc(2,i)=elas(2)*xm(1,i)+elas(3)*xm(2,i)+
1109 & elas(5)*xm(3,i)+2.d0*(elas(8)*xm(4,i)+
1110 & elas(12)*xm(5,i)+elas(17)*xm(6,i))
1111 xmc(3,i)=elas(4)*xm(1,i)+elas(5)*xm(2,i)+
1112 & elas(6)*xm(3,i)+2.d0*(elas(9)*xm(4,i)+
1113 & elas(13)*xm(5,i)+elas(18)*xm(6,i))
1114 xmc(4,i)=elas(7)*xm(1,i)+elas(8)*xm(2,i)+
1115 & elas(9)*xm(3,i)+2.d0*(elas(10)*xm(4,i)+
1116 & elas(14)*xm(5,i)+elas(19)*xm(6,i))
1117 xmc(5,i)=elas(11)*xm(1,i)+elas(12)*xm(2,i)+
1118 & elas(13)*xm(3,i)+2.d0*(elas(14)*xm(4,i)+
1119 & elas(15)*xm(5,i)+elas(20)*xm(6,i))
1120 xmc(6,i)=elas(16)*xm(1,i)+elas(17)*xm(2,i)+
1121 & elas(18)*xm(3,i)+2.d0*(elas(19)*xm(4,i)+
1122 & elas(20)*xm(5,i)+elas(21)*xm(6,i))
1124 xmc(1,i)=c1111*xm(1,i)+c1122*(xm(2,i)+xm(3,i))
1125 xmc(2,i)=c1111*xm(2,i)+c1122*(xm(1,i)+xm(3,i))
1126 xmc(3,i)=c1111*xm(3,i)+c1122*(xm(1,i)+xm(2,i))
1127 xmc(4,i)=2.d0*c1212*xm(4,i)
1128 xmc(5,i)=2.d0*c1212*xm(5,i)
1129 xmc(6,i)=2.d0*c1212*xm(6,i)
1144 if(index(i).eq.1)
then 1154 aux(i)=(q(i)+q1(i))/(1.d0/b(i)+dg(i))
1162 gl(index(i),index(j))=(xm(1,i)*xmc(1,j)+
1163 & xm(2,i)*xmc(2,j)+xm(3,i)*xmc(3,j)+2.d0*
1164 & (xm(4,i)*xmc(4,j)+xm(5,i)*xmc(5,j)+
1165 & xm(6,i)*xmc(6,j)))
1166 & *sg(i)*sg(j)+h(i,j)*aux(j)
1168 gl(index(i),index(j))=(xm(1,i)*xmc(1,j)+
1169 & xm(2,i)*xmc(2,j)+xm(3,i)*xmc(3,j)+2.d0*
1170 & (xm(4,i)*xmc(4,j)+xm(5,i)*xmc(5,j)+
1171 & xm(6,i)*xmc(6,j)))
1172 & +h(i,j)*aux(j)+(cphi(j)*c(j)+d(j)*q2(j)*sg(j))
1173 & /(1.d0+dg(j)*d(j))
1178 if(dg(i).gt.0.d0)
then 1179 gl(index(i),index(i))=gl(index(i),index(i))+
1180 & (dg(i)/dtime)**(1.d0/cn(i)-1.d0)*ck(i)/
1187 gl(index(i),index(i))=gl(index(i),index(i))+
1188 & (1.d-10/dtime)**(1.d0/cn(i)-1.d0)*ck(i)/
1203 t(5+2*j)=h(i,j)*q(j)/(1.d0/b(j)+dg(j))
1206 t(6+2*i)=c(i)*sg(i)/(1.d0+dg(i)*d(i))
1209 gr(index(i),1)=htri(i)
1211 gr(index(i),1)=htri(i)
1212 & +ck(i)*(dg(i)/dtime)**(1.d0/cn(i))
1216 gr(index(i),1)=gr(index(i),1)-t(j)*r(j)
1218 gr(index(i),1)=gr(index(i),1)
1219 & -t(4)*r(4)-t(5)*r(5)-t(6)*r(6)
1225 call dgesv(neq,nrhs,gl,lda,ipiv,gr,ldb,info)
1227 write(*,*)
'*ERROR in sc.f: linear equation solver' 1228 write(*,*)
' exited with error: info = ',info
1234 ddg(i)=gr(index(i),1)
1245 if(dg(i)+ddg(i).lt.0.d0)
then 1254 if(ichange.eq.0)
then 1269 r(j)=r(j)+xm(j,i)*sg(i)*ddg(i)
1271 r(5+2*i)=r(5+2*i)+(1.d0-b(i)*al1(i))*ddg(i)
1272 r(6+2*i)=r(6+2*i)+(cphi(i)*sg(i)-d(i)*al2(i))*ddg(i)
1283 al1(i)=al1(i)+r(5+2*i)/(1.d0+b(i)*dg(i))
1284 al2(i)=al2(i)+r(6+2*i)/(1.d0+d(i)*dg(i))
1307 call dgetrs(
'No transpose',neq,nrhs,gl,lda,ipiv,gr,ldb,info)
1309 write(*,*)
'*ERROR in sc.f: linear equation solver' 1310 write(*,*)
' exited with error: info = ',info
1323 if(iorien.gt.0)
then 1328 ddsdde(1,5)=elas(11)
1329 ddsdde(1,6)=elas(16)
1334 ddsdde(2,5)=elas(12)
1335 ddsdde(2,6)=elas(17)
1340 ddsdde(3,5)=elas(13)
1341 ddsdde(3,6)=elas(18)
1345 ddsdde(4,4)=elas(10)
1346 ddsdde(4,5)=elas(14)
1347 ddsdde(4,6)=elas(19)
1348 ddsdde(5,1)=elas(11)
1349 ddsdde(5,2)=elas(12)
1350 ddsdde(5,3)=elas(13)
1351 ddsdde(5,4)=elas(14)
1352 ddsdde(5,5)=elas(15)
1353 ddsdde(5,6)=elas(20)
1354 ddsdde(6,1)=elas(16)
1355 ddsdde(6,2)=elas(17)
1356 ddsdde(6,3)=elas(18)
1357 ddsdde(6,4)=elas(19)
1358 ddsdde(6,5)=elas(20)
1359 ddsdde(6,6)=elas(21)
1376 ddsdde(i+3,i+3)=c1212
1385 ddsdde(k,l)=ddsdde(k,l)-
1386 & gr(index(i),index(j))*xmc(k,i)*sg(i)*xmc(l,j)*sg(j)
1396 stiff(1)=ddsdde(1,1)
1397 stiff(2)=(ddsdde(1,2)+ddsdde(2,1))/2.d0
1398 stiff(3)=ddsdde(2,2)
1399 stiff(4)=(ddsdde(1,3)+ddsdde(3,1))/2.d0
1400 stiff(5)=(ddsdde(2,3)+ddsdde(3,2))/2.d0
1401 stiff(6)=ddsdde(3,3)
1402 stiff(7)=(ddsdde(1,4)+ddsdde(4,1))/2.d0
1403 stiff(8)=(ddsdde(2,4)+ddsdde(4,2))/2.d0
1404 stiff(9)=(ddsdde(3,4)+ddsdde(4,3))/2.d0
1405 stiff(10)=ddsdde(4,4)
1406 stiff(11)=(ddsdde(1,5)+ddsdde(5,1))/2.d0
1407 stiff(12)=(ddsdde(2,5)+ddsdde(5,2))/2.d0
1408 stiff(13)=(ddsdde(3,5)+ddsdde(5,3))/2.d0
1409 stiff(14)=(ddsdde(4,5)+ddsdde(5,4))/2.d0
1410 stiff(15)=ddsdde(5,5)
1411 stiff(16)=(ddsdde(1,6)+ddsdde(6,1))/2.d0
1412 stiff(17)=(ddsdde(2,6)+ddsdde(6,2))/2.d0
1413 stiff(18)=(ddsdde(3,6)+ddsdde(6,3))/2.d0
1414 stiff(19)=(ddsdde(4,6)+ddsdde(6,4))/2.d0
1415 stiff(20)=(ddsdde(5,6)+ddsdde(6,5))/2.d0
1416 stiff(21)=ddsdde(6,6)
1423 xstate(i,iint,iel)=ep(i)
1426 xstate(6+i,iint,iel)=q1(i)
1427 xstate(24+i,iint,iel)=q2(i)
1428 xstate(42+i,iint,iel)=dg0(i)+dg(i)
subroutine dgetrs(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
Definition: dgesv.f:461
subroutine dgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
Definition: dgesv.f:58
subroutine active(n, l, u, nbd, x, iwhere, iprint, prjctd, cnstnd, boxed)
Definition: lbfgsb.f:1006
subroutine creep(decra, deswa, statev, serd, ec, esw, p, qtild, temp, dtemp, predef, dpred, time, dtime, cmname, leximp, lend, coords, nstatv, noel, npt, layer, kspt, kstep, kinc)
Definition: creep.f:22