85 INTEGER iexp(2),iyu,iyo,ixu,ixo,idx,idy,ll,inpy,iexpx1,iexpxn,
86 & iexpy1,iexpyn,lx,ly,inpx,iart,lsp,ier,nx,ny,l,na,one
87 REAL*8 t(lsp,1),xa(1),ya(1),za(1)
93 ny = (t(1,1)-nx)*1000 + 0.1
99 elseif((nx-2).eq.0)
then 105 20
IF ((t(l,1)-t(l-1,1)) .LE. 0)
GO TO 900
106 30
IF ((ny-2).lt.0)
then 108 elseif((ny-2).eq.0)
then 114 50
IF ((t(1,l)-t(1,l-1)) .LE. 0)
GO TO 900
115 60
IF (na .LE. 0)
GO TO 900
120 inpy = iart - inpx*10 + 0.1
122 iexpxn = iexp(1) - iexpx1*10
124 iexpyn = iexp(2) - iexpy1*10
125 IF (nx-2 .LT. inpx) inpx = nx - 2
126 IF (ny-2 .LT. inpy) inpy = ny - 2
127 IF (iexpx1 .GT. inpx) iexpx1 = inpx
128 IF (iexpxn .GT. inpx) iexpxn = inpx
129 IF (iexpy1 .GT. inpy) iexpy1 = inpy
130 IF (iexpyn .GT. inpy) iexpyn = inpy
139 200
IF (xa(l) .LT. t(lx,1))
GO TO 220
141 IF ((lx-nx).le.0)
then 148 230
IF (ya(l) .LT. t(1,ly))
GO TO 235
152 IF (iyu .GE. 2)
GO TO 240
155 240
IF (iyo .GT. ny) iyo = ny
158 IF (ixu .GE. 2)
GO TO 245
161 245
IF (ixo .GT. nx) ixo = nx
163 IF (ixu .LT. ixo)
GO TO 270
164 IF (iyu .LT. iyo)
GO TO 250
168 IF (lx .GT. 2 .AND. xa(l) .LT. t(nx,1)) lx = lx - 1
169 IF (ly .GT. 2 .AND. ya(l) .LT. t(1,ny)) ly = ly - 1
182 260 z2(idy) = t(lx,ll)
187 270
IF (iyu .LT. iyo)
GO TO 280
188 CALL onedint(t(ixu,1),t(ixu,ly),idx,xa(l),za(l),one,inpx,iexp(1),
202 CALL onedint (t(ixu,1),t(ixu,ll),idx,xa(l),z2(idy),one,inpx,
213 300
CALL onedint (
z1,z2,idy,ya(l),za(l),one,inpy,iexp(2),ier)
static double * z1
Definition: filtermain.c:48
subroutine onedint(XE, YE, NE, XA, YA, NA, IART, IEXP, IER)
Definition: onedint.f:67