CalculiX  2.13
A Free Software Three-Dimensional Structural Finite Element Program
shape8q.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine shape8q (xi, et, xl, xsj, xs, shp, iflag)
 

Function/Subroutine Documentation

◆ shape8q()

subroutine shape8q ( real*8  xi,
real*8  et,
real*8, dimension(3,8)  xl,
real*8, dimension(3)  xsj,
real*8, dimension(3,7)  xs,
real*8, dimension(7,8)  shp,
integer  iflag 
)
20 !
21 ! shape functions and derivatives for a 8-node quadratic
22 ! isoparametric quadrilateral element. -1<=xi,et<=1
23 !
24 ! iflag=1: calculate only the value of the shape functions
25 ! iflag=2: calculate the value of the shape functions,
26 ! their derivatives w.r.t. the local coordinates
27 ! and the Jacobian vector (local normal to the
28 ! surface)
29 ! iflag=3: calculate the value of the shape functions, the
30 ! value of their derivatives w.r.t. the global
31 ! coordinates and the Jacobian vector (local normal
32 ! to the surface)
33 ! iflag=4: calculate the value of the shape functions, the
34 ! value of their 1st and 2nd order derivatives
35 ! w.r.t. the local coordinates, the Jacobian vector
36 ! (local normal to the surface)
37 ! iflag=5: calculate the value of the shape functions and
38 ! their derivatives w.r.t. the local coordinates
39 !
40  implicit none
41 !
42  integer i,j,k,iflag
43 !
44  real*8 shp(7,8),xs(3,7),xsi(2,3),xl(3,8),sh(3),xsj(3),xi,et,
45  & xip,xim,xim2,etp,etm,etm2,xipet,ximet
46 !
47 ! shape functions and their glocal derivatives for an element
48 ! described with two local parameters and three global ones.
49 !
50  xip=1.d0+xi
51  xim=1.d0-xi
52  xim2=xip*xim
53 !
54  etp=1.d0+et
55  etm=1.d0-et
56  etm2=etp*etm
57 !
58  xipet=xi+et
59  ximet=xi-et
60 !
61 ! shape functions
62 !
63  shp(4,1)=xim*etm*(-xipet-1.d0)/4.d0
64  shp(4,2)=xip*etm*(ximet-1.d0)/4.d0
65  shp(4,3)=xip*etp*(xipet-1.d0)/4.d0
66  shp(4,4)=xim*etp*(-ximet-1.d0)/4.d0
67  shp(4,5)=xim2*etm/2.d0
68  shp(4,6)=xip*etm2/2.d0
69  shp(4,7)=xim2*etp/2.d0
70  shp(4,8)=xim*etm2/2.d0
71 !
72  if(iflag.eq.1) return
73 !
74 ! local derivatives of the shape functions: xi-derivative
75 !
76  shp(1,1)=etm*(xi+xipet)/4.d0
77  shp(1,2)=etm*(xi+ximet)/4.d0
78  shp(1,3)=etp*(xi+xipet)/4.d0
79  shp(1,4)=etp*(xi+ximet)/4.d0
80  shp(1,5)=-xi*etm
81  shp(1,6)=etm2/2.d0
82  shp(1,7)=-xi*etp
83  shp(1,8)=-etm2/2.d0
84 !
85 ! local derivatives of the shape functions: eta-derivative
86 !
87  shp(2,1)=xim*(et+xipet)/4.d0
88  shp(2,2)=xip*(et-ximet)/4.d0
89  shp(2,3)=xip*(et+xipet)/4.d0
90  shp(2,4)=xim*(et-ximet)/4.d0
91  shp(2,5)=-xim2/2.d0
92  shp(2,6)=-et*xip
93  shp(2,7)=xim2/2.d0
94  shp(2,8)=-et*xim
95 !
96  if(iflag.eq.5) return
97 !
98 ! computation of the local derivative of the global coordinates
99 ! (xs)
100 !
101  do i=1,3
102  do j=1,2
103  xs(i,j)=0.d0
104  do k=1,8
105  xs(i,j)=xs(i,j)+xl(i,k)*shp(j,k)
106  enddo
107  enddo
108  enddo
109 !
110 ! computation of the jacobian vector
111 !
112  xsj(1)=xs(2,1)*xs(3,2)-xs(3,1)*xs(2,2)
113  xsj(2)=xs(1,2)*xs(3,1)-xs(3,2)*xs(1,1)
114  xsj(3)=xs(1,1)*xs(2,2)-xs(2,1)*xs(1,2)
115 !
116  if(iflag.eq.3) then
117 !
118 ! computation of the global derivative of the local coordinates
119 ! (xsi) (inversion of xs)
120 !
121  if(dabs(xsj(3)).gt.1.d-10) then
122  xsi(1,1)=xs(2,2)/xsj(3)
123  xsi(2,2)=xs(1,1)/xsj(3)
124  xsi(1,2)=-xs(1,2)/xsj(3)
125  xsi(2,1)=-xs(2,1)/xsj(3)
126  if(dabs(xsj(2)).gt.1.d-10) then
127  xsi(2,3)=xs(1,1)/(-xsj(2))
128  xsi(1,3)=-xs(1,2)/(-xsj(2))
129  elseif(dabs(xsj(1)).gt.1.d-10) then
130  xsi(2,3)=xs(2,1)/xsj(1)
131  xsi(1,3)=-xs(2,2)/xsj(1)
132  else
133  xsi(2,3)=0.d0
134  xsi(1,3)=0.d0
135  endif
136  elseif(dabs(xsj(2)).gt.1.d-10) then
137  xsi(1,1)=xs(3,2)/(-xsj(2))
138  xsi(2,3)=xs(1,1)/(-xsj(2))
139  xsi(1,3)=-xs(1,2)/(-xsj(2))
140  xsi(2,1)=-xs(3,1)/(-xsj(2))
141  if(dabs(xsj(1)).gt.1.d-10) then
142  xsi(1,2)=xs(3,2)/xsj(1)
143  xsi(2,2)=-xs(3,1)/xsj(1)
144  else
145  xsi(1,2)=0.d0
146  xsi(2,2)=0.d0
147  endif
148  else
149  xsi(1,2)=xs(3,2)/xsj(1)
150  xsi(2,3)=xs(2,1)/xsj(1)
151  xsi(1,3)=-xs(2,2)/xsj(1)
152  xsi(2,2)=-xs(3,1)/xsj(1)
153  xsi(1,1)=0.d0
154  xsi(2,1)=0.d0
155  endif
156 !
157 ! computation of the global derivatives of the shape functions
158 !
159  do k=1,8
160  do j=1,3
161  sh(j)=shp(1,k)*xsi(1,j)+shp(2,k)*xsi(2,j)
162  enddo
163  do j=1,3
164  shp(j,k)=sh(j)
165  enddo
166  enddo
167 !
168  elseif(iflag.eq.4) then
169 !
170 ! local 2nd order derivatives of the shape functions: xi,xi-derivative
171 !
172  shp(5,1)=etm/2.d0
173  shp(5,2)=etm/2.d0
174  shp(5,3)=etp/2.d0
175  shp(5,4)=etp/2.d0
176  shp(5,5)=-etm
177  shp(5,6)=0.d0
178  shp(5,7)=-etp
179  shp(5,8)=0.d0
180 !
181 ! local 2nd order derivatives of the shape functions: xi,eta-derivative
182 !
183  shp(6,1)=(1.d0-2.d0*xipet)/4.d0
184  shp(6,2)=(-1.d0-2.d0*ximet)/4.d0
185  shp(6,3)=(1.d0+2.d0*xipet)/4.d0
186  shp(6,4)=(-1.d0+2.d0*ximet)/4.d0
187  shp(6,5)=xi
188  shp(6,6)=-et
189  shp(6,7)=-xi
190  shp(6,8)=et
191 !
192 ! local 2nd order derivatives of the shape functions: eta,eta-derivative
193 !
194  shp(7,1)=xim/2.d0
195  shp(7,2)=xip/2.d0
196  shp(7,3)=xip/2.d0
197  shp(7,4)=xim/2.d0
198  shp(7,5)=0.d0
199  shp(7,6)=-xip
200  shp(7,7)=0.d0
201  shp(7,8)=-xim
202 !
203 ! computation of the local 2nd derivatives of the global coordinates
204 ! (xs)
205 !
206  do i=1,3
207  do j=5,7
208  xs(i,j)=0.d0
209  do k=1,8
210  xs(i,j)=xs(i,j)+xl(i,k)*shp(j,k)
211  enddo
212  enddo
213  enddo
214  endif
215 !
216  return
Hosted by OpenAircraft.com, (Michigan UAV, LLC)