BFL =
$$\frac{0.863}{1 + 2.3G} \left(\frac{W/S}{\rho g C_{L_{\text{climb}}}} + h_{\text{obstacle}} \right) \left(\frac{1}{T_{\text{av}}/W - U} + 2.7 \right) + \left(\frac{655}{\sqrt{\rho/\rho_{\text{SL}}}} \right)$$
 (17.112)

JET:
$$T_{\text{av}} = 0.75 \ T_{\text{takeoff}} \left[\frac{5 + \text{BPR}}{4 + \text{BPR}} \right]$$
 (17.113)

PROP:
$$T_{\text{av}} = 5.75 \text{ bhp} \left[\frac{(\rho/\rho_{\text{SL}})N_e D_p^2}{\text{bhp}} \right]^{\frac{1}{3}}$$
 (17.114)

where

 N_e

$$G = \gamma_{\text{climb}} - \gamma_{\text{min}}$$

 $\gamma_{\text{climb}} = \arcsin [(T-D)/W], 1\text{-engine-out, climb speed}$

$$\gamma_{\min} = 0.024$$
 2-engine; 0.027 3-engine; 0.030 4-engine

$$C_{L_{\text{climb}}} = C_L$$
 at climb speed (1.2 V_{stall})
 $h_{\text{obstacle}} = 35$ ft commercial, 50 ft military

$$U = 0.01 C_{L_{\text{max}}} + 0.02 \text{ for flaps in takeoff position}$$

= propeller diameter (ft)