Properties: adiabatic, isentropic, asymmetric
A vortex arises, when a gas flows along a rotating device. If the inertia of the gas is small and the device rotates at a high speed, the device will transfer part of its rotational energy to the gas. This is called a forced vortex. It is characterized by an increasing circumferential velocity for increasing values of the radius, Figure 110.
Another case is represented by a gas exhibiting substantial swirl at a given radius and losing this swirl while flowing away from the axis. This is called a free vortex and is characterized by a hyperbolic decrease of the circumferential velocity, Figure 110. The initial swirl usually comes from a preceding rotational device.
The equations for the forced and free vortex are derived from:
is assumed, i.e. the radial velocity is negligible w.r.t. the tangential velocity.
constant | (108) |
e.g. equal to the value at the inner or outer position.
Integrating the differential equation (107) from to (after substitution of the isentropic assumption and separation of the variables and ; the index ``i'' stands for inner (smallest radius), ``o'' stands for outer (largest radius)) leads to
The forced vortex, Figure 111, is geometrically characterized by its upstream and downstream radius. The direction of the flow can be centripetal or centrifugal, the element formulation works for both. The core swirl ratio , which takes values between 0 and 1, denotes the degree the gas rotates with the rotational device. If there is no transfer of rotational energy, if the gas rotates with the device. The theoretical pressure ratio across a forced vertex satisfies (substitute in Equation (109))
(110) |
where is the total pressure, the total temperature and the circumferential velocity of the rotating device. It can be derived from the observation that the circumferential velocity of the gas varies linear with the radius (Figure 110). Notice that the pressure at the outer radius always exceeds the pressure at the inner radius, no matter in which direction the flow occurs.
The pressure correction factor allows for a correction to the theoretical pressure drop across the vortex and is defined by
(111) |
Finally, the parameter controls the temperature increase due to the vortex. In principal, the rotational energy transferred to the gas also leads to a temperature increase. If the user does not want to take that into account should be selected, else or should be specified, depending on whether the vortex is defined in the absolute coordinate system or in a relative system fixed to the rotating device, respectively. A relative coordinate system is active if the vortex element is at some point in the network preceded by an absolute-to-relative gas element and followed by a relative-to-absolute gas element. The calculated temperature increase is only correct for . Summarizing, a forced vortex element is characterized by the following constants (to be specified in that order on the line beneath the *FLUID SECTION, TYPE=VORTEX FORCED card):
For the free vortex the value of the circumferential velocity of the gas at entrance is the most important parameter. It can be defined by specifying the number of the preceding element, usually a preswirl nozzle or another vortex, imparting the circumferential velocity. In that case the value is not used. For centrifugal flow the value of the imparted circumferential velocity can be further modified by the swirl loss factor defined by
(112) |
Alternatively, if the user specifies , the circumferential velocity at entrance is taken from the rotational speed of a device imparting the swirl to the gas. In that case and are not used and . The theoretical pressure ratio across a free vertex satisfies (substitute in Equation (109))
(113) |
where is the total pressure, the total temperature and the circumferential velocity of the gas. It can be derived from the observation that the circumferential velocity of the gas varies inversely proportional to the radius (Figure 110). Notice that the pressure at the outer radius always exceeds the pressure at the inner radius, no matter in which direction the flow occurs.
Here too, the pressure can be corrected by a pressure correction factor and a parameter is introduced to control the way the temperature change is taken into account. However, it should be noted that for a free vortex the temperature does not change in the absolute system. Summarizing, a free vortex element is characterized by the following constants (to be specified in that order on the line beneath the *FLUID SECTION, TYPE=VORTEX FREE card):
Example files: vortex1, vortex2, vortex3.