Therefore: \[w(x,y,z) = w_0(z) - x {u {}_{,z}} - y {v {}_{,z}}\]
Now, we can write strain:
\[\begin{align} {\varepsilon_{zz}}=& \, {\frac{\partial w}{\partial z}} \\ {\gamma_{zy}}=& \, {\frac{\partial v}{\partial z}} + {\frac{\partial w}{\partial y}} = {\frac{\partial v_0}{\partial z}} + \beta = 0\\ {\gamma_{zx}}=& \, {\frac{\partial u}{\partial z}} + {\frac{\partial w}{\partial x}} = {\frac{\partial u_0}{\partial z}} + \alpha = 0\\ {\varepsilon_{zz}}=& \, {w_0 {}_{,z}} - x {\alpha {}_{,z}} - y {\beta {}_{,z}} \\ \end{align}\]
When the assumptions of an Euler-Bernoulli beam hold, shear deformation is assumed negligible: \[\begin{align} {\gamma_{zy}}=& \, 0 = {\frac{\partial v_0}{\partial z}} + \beta \\ {\gamma_{zx}}=& \, 0 = {\frac{\partial u_0}{\partial z}} + \alpha \\ \end{align}\]
thus: \[\begin{align} \alpha(z) =& \, - {u {}_{,z}} \\ \beta(z) =& \, - {v {}_{,z}} \\ \end{align}\] \[\begin{align} {\varepsilon_{zz}}=& \, {w_0 {}_{,z}} - x {\alpha {}_{,z}} - y {\beta {}_{,z}} \\ \end{align}\]
\[\begin{align} {\varepsilon_{zz}}=& \, {w_0 {}_{,z}} - x {u {}_{,zz}} - y {v {}_{,zz}}\\ {\varepsilon_{zz}}=& \, {\varepsilon_{zz 0}}- x {u {}_{,zz}} - y {v {}_{,zz}} \end{align}\]
The stress can now be written: \[\begin{align} {\sigma_{zz}}=& \, E {\varepsilon_{zz}}\\ {\sigma_{zz}}=& \, E \left({\varepsilon_{zz 0}}- x {u {}_{,zz}} - y {v {}_{,zz}}\right) \end{align}\]
Lets define some terms: \[\begin{align} \int_A \, dA =& \, A \\ \int_A x \, dA =& \, x_c A \\ \int_A y \, dA =& \, y_c A \\ \end{align}\]
Now we have: \[\begin{align} P =& \, E \left(A {\varepsilon_{zz 0}}- x_c A {u {}_{,zz}} - y_c A {v {}_{,zz}} \right) \\ \end{align}\]
We choose our coordinate system so that: \[\begin{align} x_c = 0 \\ y_c = 0 \\ \end{align}\]
Which leads to: \[\begin{align} P =& \, E A \, {\varepsilon_{zz 0}}\\ \end{align}\]
This means that the axial force in the beam is due to the elongation of the centroidal axis and is not related to the bending of the beam.
\[\begin{align} {\sigma_{zz}}=& \, E \left({\varepsilon_{zz 0}}- x {u {}_{,zz}} - y {v {}_{,zz}}\right) \end{align}\]
The resultant bending moment about the centroid is: \[M_x = \int_A y \cdot {\sigma_{zz}}\, dA\]
\[M_x = E \left( {\varepsilon_{zz 0}}\cdot \int_A y \, dA - {u {}_{,zz}} \cdot \int_A x y \, dA - {v {}_{,zz}} \cdot \int_A y^2 \, dA\right)\]
Cross section of the rat femur, showing the neutral axis, which goes through the centroid and has an orientation with respect to the ML axis. Note that for this example, the bending moment is applied only about the AP axis. Also shown are the locations of maximum tensile and compressive bending stress, respectively.
\[\begin{align} {\sigma_{zz}}=& E \left({\varepsilon_{zz 0}}- x {u {}_{,zz}} - y {v {}_{,zz}}\right) \end{align}\]
\[M_y = - E \left( {\varepsilon_{zz 0}}\cdot \int_A x \, dA - {u {}_{,zz}} \cdot \int_A x^2 \, dA - {v {}_{,zz}} \cdot \int_A x y \, dA\right)\]
\[\begin{align} M_x =& \, - E{I_{xy}}{u {}_{,zz}} - E{I_{xx}}{v {}_{,zz}} \\ M_y =& \, + E{I_{yy}}{u {}_{,zz}} + E{I_{xy}}{v {}_{,zz}} \\ \frac{P}{A} =& \, E {\varepsilon_{zz 0}}= {\sigma_{zz}}^{\mathrm{ave}} \\ \end{align}\]
Hence:
Beam bending: In the lateral directions (\(x\) & \(y\)):
In summary, equilibrium arguments require: \[\begin{align} {\frac{d S_x(z)}{d z}} =& -p_x \\ {\frac{d S_y(z)}{d z}} =& -p_y \\ \frac{d M_x}{dz} =& +S_y \\ \frac{d M_y}{dz} =& -S_x \\ \end{align}\]
Combining these leads to: \[\begin{align} \frac{d^2 M_x}{dz^2} =& -p_y \\ \frac{d^2 M_y}{dz^2} =& +p_x \\ \end{align}\]
Recall also: \[\begin{align} M_x =& \, - E{I_{xy}}{u {}_{,zz}} - E{I_{xx}}{v {}_{,zz}} \\ M_y =& \, + E{I_{yy}}{u {}_{,zz}} + E{I_{xy}}{v {}_{,zz}} \\ \end{align}\]
In matrix form these can be written as: \[\begin{align} \left\{ \begin{array}{c} M_x \\ M_y\\ \end{array} \right\} = \left[ \begin{array}{cc} -EI_{xy} & -EI_{xx} \\ EI_{yy} & EI_{xy} \\ \end{array} \right] \left\{ \begin{array}{c} {u {}_{,zz}} \\ {v {}_{,zz}} \\ \end{array} \right\} \end{align}\]
Now, lets examine the stress equation again: \[\begin{equation} \begin{split} {\sigma_{zz}}=& E \left( -{u {}_{,zz}} x - {v {}_{,zz}} y \right) \\ =& \frac{E}{\det EI} \left[\right. \\ & -x \left(EI_{xy} M_x + EI_{xx} M_y \right) \\ & \left. + y \left(EI_{yy} M_x + EI_{xy} M_y\right) \right] \\ \end{split} \end{equation}\]
It is these equations which allow us to compute deflections, strains, and stresses from geometry, material, and loads.
Thus: \[\begin{align} \frac{d^2}{d z^2} \left[ E {I_{yy}}{u {}_{,zz}} + E {I_{xy}}{v {}_{,zz}} \right] =& \, p_x \\ \frac{d^2}{d z^2} \left[ E {I_{xy}}{u {}_{,zz}} + E {I_{xx}}{v {}_{,zz}} \right] =& \, p_y \\ \end{align}\]
If symmetry exists across the \(x\) or \(y\) axis, the bending equations are uncoupled. \[\begin{align} \frac{d^2}{d z^2} \left[ E {I_{yy}}{u {}_{,zz}} \right] =& \; p_x \\ \frac{d^2}{d z^2} \left[ E {I_{xx}}{v {}_{,zz}} \right] =& \; p_y \\ M_x =& \, - E{I_{xx}}{v {}_{,zz}} \\ M_y =& \, + E{I_{yy}}{u {}_{,zz}} \\ \end{align}\]
\[\begin{align} E I_{yy} \; {u {}_{,zzzz}} =& \; p_x \\ E I_{yy} \; {u {}_{,zzz}} =& \; p_x z + C_1 \\ E I_{yy} \; {u {}_{,zz}} =& \; p_x \frac{z^2}{2} + C_1 z + C_2\\ E I_{yy} \; {u {}_{,z}} =& \; p_x \frac{z^3}{6} + C_1 \frac{z^2}{2} + C_2 z +C_3\\ E I_{yy} \; u(z) =& \; p_x \frac{z^4}{24} + C_1 \frac{z^3}{6} + C_2 \frac{z^2}{2} +C_3 z +C_4\\ \end{align}\]
\[E I_{yy} u(z) = p_x \left(\frac{z^4}{24}-\frac{l\,z^3}{6}+\frac{l^2\,z^2}{4}\right)\]
Components | Relationship | Comments |
---|---|---|
Screw - Bone (i.e. screw threads) | Rigid (tied contact) | Fixed all DOF |
Plate - Bone | Contact pair | Friction sliding (\(\mu=0.3\)) |
Fracture surfaces | Contact pair | Friction sliding (\(\mu=1.0\)) |
Plate - Screw (Conventional) | Universal joint | Provide a universal connection between the screw control node and nodes on the bearing surface of the plate. |
Plate - Screw (Locked) | Rigid | Provide a rigid connection between the screw control node and nodes on the bearing surface of the plate. |
Fracture type | Construct | Construct | Construct |
Neutralization plate (Conventional screw construct) | Neutralization plate (Fixed angle screw construct) | Lateral periarticular distal fibular plate (Fixed angle screw construct) | |
Comminuted fracture | Model #1 | Model #3 | Model #5 |
Danis-Weber B fracture | Model #2 | Model #4 | Model #6 |
: Fracture Plate Combinations \[fracture-plate-combinations\]
Displacement (\(|\Delta \vec{u}|\)) Due to Fibulotalar Reaction Load and External Moment With Danis-Weber B Fracture