AE4630 - Aerospace Structural Design:
Lecture 23

Introduction to Energy Methods

Brief announcements

  • I reviewed due dates on e-learning
    • Moved the final to its appropriate time 12/17 12:30PM
    • Moved the project back two days to 12/10 2:30PM
  • Grader has completed 80% of homework 7
  • Last homework assignment will be optional (practice only, solutions immediately available). Fair game on the exam.
  • Don’t forget about the limited number of licenses for software!

Energy principles–Background

The content of this section was delivered over several lectures:

Work

Definition of conservative force

Work vectors

  • Work: \[\begin{align} W = \vec{F} \cdot \vec{d} \\ W = \vec{M} \cdot \vec{\theta} \\ \end{align}\]

Notes:

  • Only the component of the force (or moment) in the direction of motion does work.
  • Work is scalar.

In more detail, the equations are: \[\begin{align} W =& \; \vec{F} \cdot \vec{d} \\ W =& \; (F_x i + F_y j + F_z k) \cdot (d_x i + d_y j + d_z k) \\ W =& \; F_x d_x + F_y d_y + F_z d_z \\ \end{align}\]

\[\begin{align} W =& \; \vec{M} \cdot \vec{\theta} \\ W =& \; M_x \theta_x + M_y \theta_y + M_z \theta_z \\ \end{align}\]

Definition of a potential field

Potential (\(V\)) is a function for which: \[\begin{equation*} F_i = - V_{,i} \end{equation*}\] ie: \[\begin{align} F_x = -{\frac{\partial V}{\partial x}} \\ F_y = -{\frac{\partial V}{\partial y}} \\ F_z = -{\frac{\partial V}{\partial z}} \\ \end{align}\]

You are already familiar with potential:

Gravitational Potential

What is a potential function for this scenario?

\[\begin{equation*} V = -m g y + C \end{equation*}\] \[\begin{equation*} {\frac{\partial V}{\partial y}} = - F \end{equation*}\]

\[\begin{equation*} {\frac{\partial V}{\partial y}} = - m g \end{equation*}\]

\[\begin{equation*} F = m g \end{equation*}\]

For a displacement increment \[\begin{equation*} ds = d_x i + d_y j + d_z k \end{equation*}\] the work increment by the force \(F\) is:

\[\begin{align} dW =&\; F \cdot ds = Fx dx + Fy dy + Fz dz \\ dW =&\; -{\frac{\partial V}{\partial x}} dx -{\frac{\partial V}{\partial y}} dy -{\frac{\partial V}{\partial z}} dz \\ dW =&\; - dV \\ \end{align}\]

Therefore: \[\begin{equation*} dW + dV = 0 \end{equation*}\]

Thoughts on potential

\[\begin{equation*} dW + dV = 0 \end{equation*}\]

  • In closed conservative systems (no dissipation) the potential change (\(dV=\delta V=\Delta V\)) is equal to the negative of the work done.
  • Note that in a free fall of an object, its potential decreases by \(mgh\), where \(h\) is the drop in height.
  • The work done by the gravity force \(mg\) during that fall is equal \(mgh\).

External work

Work of external loads Load-Displacement work increment External work definition

The work done by P is: \[\begin{equation*} W_e=\int_0^y P dy \end{equation*}\]

What happens to the energy that goes into the work?

  • The force is transmitted through the bar and causes deformation (strain) of the bar.

Strain energy and complementary strain energy

Strain energy

Strain energy in an axial bar Energy and complementary energy

In an elastic medium, the energy is stored as recoverable internal energy.

\[\begin{equation*} U_0 = \int_0^{\varepsilon}\sigma d {\varepsilon} \end{equation*}\]

\[\begin{equation*} U = \int_V U_0 \; dV \end{equation*}\]

For the uniaxial bar:

\[\begin{equation*} U = A l \, U_0 \end{equation*}\] - \(U_0\) – specific strain energy or strain energy density - strain energy per unit volume

Linear elastic material

\[\begin{equation*} \sigma = E {\varepsilon} \end{equation*}\]

\[\begin{equation*} U_0 = \int_0^{\varepsilon}E {\varepsilon}d {\varepsilon} \end{equation*}\] \[\begin{equation*} U_0 = \frac{1}{2} E {\varepsilon}^2 \end{equation*}\] \[\begin{equation*} U_0 = \frac{1}{2} \frac{\sigma^2}{E} \end{equation*}\] \[\begin{equation*} U_0 = \frac{1}{2} \sigma {\varepsilon} \end{equation*}\]

  • For elastic materials,
    • the work due to external load is stored as energy in the bar
    • \(U=W\)
  • Therefore:
    • \(U=\int_0^y P dy\)
    • \(P = {\frac{\partial U}{\partial y}}\)
    • This equation is commonly known as “Castigliano’s 1st theorem.” (1879)

Complementary energy

  • We also define the term complementary energy as: \[\begin{equation*} U^c_0 = \int_0^\sigma {\varepsilon}d \sigma \end{equation*}\] \[\begin{equation*} U^c = \int_V U^c_0 \; dV \end{equation*}\]
  • It can be shown that (for our uniaxial bar) \[\begin{equation*} y = {\frac{\partial U^c}{\partial P}} \end{equation*}\]
  • This equation is commonly known as “Castigliano’s 2nd theorem.”

Note: for Linear elastic materials

\[\begin{equation*} U = U^c \end{equation*}\]

Castigliano’s Method

Castigliano’s theorums

  • In summary:
    • \(P_i = {\frac{\partial U}{\partial \delta_i}}\)
    • \(\delta_i = {\frac{\partial U^c}{\partial P_i}}\)
    • \(P_i\) and \(\delta_i\) represent generalized loads and displacements.
  • The theorems that lead to these equations are useful for conveniently finding the deflection or reaction at a point of interest.

Example: Castigliano’s method for a cantilever beam with a tip load

Cantilever beam with tip load

\[\begin{equation*} U^c=\int_V \int_{\sigma} {\varepsilon}\; d\sigma \; dV \end{equation*}\] \[\begin{equation*} U^c=\int_V \int_{\sigma} \frac{\sigma}{E} \; d\sigma \; dV \end{equation*}\] \[\begin{equation*} U^c=\int_V \frac{\sigma^2}{2 E} \; dV \end{equation*}\]

  • Recognize the relationship between \(\sigma\) and the moment in the cross section: \[\begin{equation*} \sigma = \frac{M(z) y}{I} \end{equation*}\]
  • Therefore: \[\begin{equation*} U^c=\int_V \frac{1}{2 E} \left(\frac{M(z) y}{I}\right)^2 \; dV \end{equation*}\]
  • The moment is constant with respect to the cross section, therefore it can be pulled out such that \(\int_A y^2 dA\) is isolated: \[\begin{equation*} U^c=\int_l \frac{M(z)^2}{2 E I^2} \int_A \left(y^2\right) \; dA \; dz \end{equation*}\] \[\begin{equation*} U^c=\int_l \frac{M(z)^2}{2 E I^2} \left(I\right) \; dz \end{equation*}\] \[\begin{equation*} U^c=\int \frac{1}{2} \frac{M(z)^2}{EI} \; dz \end{equation*}\]
  • The above form of the equation is complementary energy for a beam of uniform cross section (in bending about one axis). You needn’t re-derive this if all the appropriate assumptions apply.
  • From Castigliano’s theorem:

\[\begin{equation*} \delta_p=\frac{d}{d P} U^c\left(P\right) \end{equation*}\]

\[\begin{equation*} U^c\left(P\right)=\frac{\int_{0}^{l}{M^{2 }\left(z\right)\;dz}}{2 EI } \end{equation*}\]

  • The solution can be expressed most simply as: \[\begin{equation*} \delta_P = \frac{\partial U^C}{\partial P} = \frac{\int_{0}^{l}{M\left(z\right) \frac{\partial M}{\partial P} \;dz}}{EI} \end{equation*}\]
    • however, in this example the moment will be squared first and then subsequently a derivative will be taken.

Cantilever beam with tip load

\[\begin{equation*} M\left(z\right)=\left(l-z\right) P \end{equation*}\]

\[\begin{equation*} U^c = \frac{\int_{0}^{l}{\left(l-z\right)^{2} P^{2} \;dz}}{2 EI } \end{equation*}\]

\[\begin{equation*} U^c = \frac{\int_{0}^{l}{\left(l^2-2 l z + z^2\right) P^{2} \;dz}}{2 EI } \end{equation*}\]

\[\begin{equation*} U^c = \frac{{\left.\left(l^2 z- l z^2 + \frac{z^3}{3} \right) P^{2} \right|_0^l}}{2 EI } \end{equation*}\]

\[\begin{equation*} U^c = \frac{l^3 P^2}{6 EI } \end{equation*}\]

  • Therefore, the displacement is: \[\begin{equation*} \delta_P=\frac{d}{d P} \left(\frac{l^3 P^2}{6 EI } \right) \end{equation*}\] \[\begin{equation*} \delta_P= \frac{l^{3} P}{3 EI } \end{equation*}\]
  • This is identical to the tip displacement predicted by beam theory.

Castigliano’s method for displacement at the mid-point load due to a tip load

Cantilever beam with tip and middle loads

  • Recall: \[\begin{equation*} \delta_Q=\frac{d}{d Q} U^c \end{equation*}\]

  • The total complementary strain energy has two parts: \[\begin{equation*} U^c = U_1^c + U_2^c \end{equation*}\] \[\begin{equation*} U_1^c=\int_{0}^{\frac{l}{2}} \frac{{M_1^{2 }\left(z\right)}}{2 EI } \; dz \end{equation*}\] \[\begin{equation*} U_2^c=\int_{\frac{l}{2}}^{l} \frac{{M_2^{2 }\left(z\right)}}{2 EI } \; dz \end{equation*}\]

\[\begin{equation*} \small U^c=\int_{0}^{\frac{l}{2}} \frac{{M_1^{2 }\left(z\right)}}{2 EI } \; dz+ \int_{\frac{l}{2}}^{l} \frac{{M_2^{2 }\left(z\right)}}{2 EI } \; dz \end{equation*}\]

\[\begin{equation*} \small M_2\left(z\right)=\left(l-z\right) P \end{equation*}\]

\[\begin{equation*} \small M_1\left(z\right)=\left(\frac{l}{2}-z\right) Q+\left(l-z\right) P \end{equation*}\]

\[\begin{equation*} \small U^c= \int_{0}^{\frac{l}{2}} \frac{{\left(\left(\frac{l}{2}-z\right) Q+\left(l-z\right) P\right)^{2}}}{2 EI } \; dz +\int_{\frac{l}{2}}^{l} \frac{{\left(l-z\right)^{2}\;dz} P^{2}}{2 EI } \end{equation*}\]

\[\begin{equation*} \small \delta_Q= \frac{d}{d Q} \left(\frac{\int_{0}^{\frac{l}{2}}{\left(\left(\frac{l}{2}-z\right) Q+\left(l-z\right) P\right)^{2}}}{2 EI } \; dz+\frac{\int_{\frac{l}{2}}^{l}{\left(l-z\right)^{2}\;dz} P^{2}}{2 EI }\right) \end{equation*}\]

\[\begin{equation*} \small \delta_Q=\frac{d}{d Q} \left(\frac{2 l^3 Q^2}{96 EI }+\frac{5 l^3 P Q}{48 EI }\right) = \frac{2 l^{3} Q+5 l^{3} P}{48 EI } \end{equation*}\]

Castigliano for a statically indeterminate system

(Castigliano for more complex systems)

Castigliano for statically indeterminate system

Bar with spring

The total complementary energy is: \[\begin{equation*} U^c=\frac{\int_{0}^{l}{F_b^2\left(x\right)\;dx}}{2\,\mathrm{EA}}+\frac{F_s^2}{2\,k} \end{equation*}\]

  • The force through the bar: \[\begin{equation*} \label{eq:barplusspring} F_b\left(x\right)=P+F_s \end{equation*}\]

  • Thus: \[\begin{equation*} U^c = \frac{l\,\left(P+F_s\right)^2}{2\,\mathrm{EA}}+\frac{F_s^2}{2\,k} \end{equation*}\]

  • Since \(P\) is the applied force, we will take derivatives with respect to it. We must also involve the spring stiffness, thus, we substitute \(F_s = - \delta_P k\):

\[\begin{equation*} U^c = \frac{l\,\left(P-\delta_P\,k\right)^2}{2\,\mathrm{EA}}+\frac{\delta_P^2\,k}{2} \end{equation*}\]

  • Taking the derivative: \[\begin{equation*} \delta_P=\frac{l\,\left(P-\delta_P\,k\right)}{\mathrm{EA}} \end{equation*}\]

  • Solving for \(\delta_P\): \[\begin{equation*} \left[ \delta_P=\frac{l\,P}{\mathrm{EA}+k\,l} \right] \end{equation*}\]

  • Note we can also take \[\begin{equation*} \frac{\partial U^c}{\partial F_s} = \frac{l\,\left(P+F_s\right)}{\mathrm{EA}}+\frac{F_s}{k} = 0 \end{equation*}\]

  • This equation would recover the compatibility equation, that is, the displacement requirement which would balance the forces.

Virtual Work

  • Recall our definition of a potential function:
  • Potential (\(V\))–a function for relating a force-like quantity to a gradient. \[\begin{equation*} F_i = -{\frac{\partial V}{\partial i}} \end{equation*}\]
  • Therefore: define \(V\) as a potential function of the external forces (acting through external displacements). \[\begin{equation*} \delta V = - \delta W_e \end{equation*}\](Think of \(\delta\) as an arbitrary increment.)
  • Call \(U\) a potential function of the internal forces (acting through internal displacements): \[\begin{equation*} \delta U = - \delta W_i \end{equation*}\]
  • We can now examine a “work” equation such that: \[\begin{equation*} \delta W = + \delta W_e +\delta W_i =0 \end{equation*}\]
  • We can refer to this equation as “Virtual Work”.
  • Note that this means: \[\begin{equation*} \delta U + \delta V=0 \end{equation*}\] \[\begin{equation*} \delta U = \delta W_e \end{equation*}\]

Definitions

  • \(\delta W ( = \Delta W)\) “Virtual work” - The “work” done by a force (moment) due to a “virtual displacement”.
  • \(\delta u ( = \Delta u)\) “Virtual displacement” - A kinematically admissible displacement
    • A displacement that does not violate the kinematic boundary conditions
    • The displacement is arbitrary
    • It need not be related to the actual displacement that results from the applied loads.
  • \(\delta F ( = \Delta F)\) “Virtual force”
    • Any force field that is zero on the boundary
      • It must not do work on the boundary
    • The force is arbitrary
    • It need not be related to the actual force that results from the displacements.
    • Could also be a virtual stress
  • “The principle of virtual work”
    • A system is in static equilibrium if (and only if) the virtual work is zero for all independent virtual displacements.
    • \(\delta W=0\)

Rigid body example

Rigid body virtual work

  • Note: since we are considering this as a rigid body and don’t want to track strain energy (spring energy), we can assume that the spring applies an external force based on the spring force formula.

Rigid body virtual work

  • Step 1: Describe the current position of the forces: \[\begin{equation*} \begin{split} y_P\left(\theta\right) &= \, +\frac{l\,\sin \theta}{2} \\ y_k\left(\theta\right) &= \, -\frac{l\,\sin \theta}{2} \\ y_Q\left(\theta\right) &= \, +\frac{l\,\sin \theta}{2} \\ \end{split} \end{equation*}\]

Rigid body virtual work

  • Step 2: Take the variation. (You are assuming that a small virtual displacement can be added to the equilibrium displacement. How does the position change assuming a small change in theta? This is very similar to taking a derivative.) \[\begin{equation*} \begin{split} \delta y_P &= \, +\frac{l\,\cos \theta\,\delta \theta}{2} \\ \delta y_k &= \, -\frac{l\,\cos \theta\,\delta \theta}{2} \\ \delta y_Q &= \, +\frac{l\,\cos \theta\,\delta \theta}{2} \\ \end{split} \end{equation*}\]

Rigid body virtual work

  • Step 3: Write the virtual work, ie the forces times the virtual displacements. \[\begin{equation*} \delta W_e=\delta y_Q\,F_Q+\delta y_P\,F_P+\delta y_k\,F_k \end{equation*}\] \[\begin{equation*} \delta W_e=\frac{l\,F_Q\,\cos \theta\,\delta \theta}{2}+\frac{l\,F_P\,\cos \theta\,\delta \theta}{2}-\frac{l\,F_k\,\cos \theta\,\delta \theta}{2} \end{equation*}\]

Rigid body virtual work

  • Step 4: Identify the forces: \[\begin{equation*} \begin{split} F_P &=\, -P \\ F_Q &=\, +Q \\ \end{split} \end{equation*}\] \[\begin{equation*} \begin{split} F_k &=\, - k\,y_k\left(\theta\right) \\ F_k &=\, \frac{l\,k\,\sin \theta}{2} \\ \end{split} \end{equation*}\]
  • Plug these forces into the virtual work equation: \[\begin{equation*} \frac{l\,F_Q\,\cos \theta\,\delta \theta}{2}+\frac{l\,F_P\,\cos \theta\,\delta \theta}{2}-\frac{l\,F_k\,\cos \theta\,\delta \theta}{2}=0 \end{equation*}\]

    \[\begin{equation*} \begin{split} \frac{l\,\left(F_Q+F_P-F_k\right)\,\cos \theta\,\delta \theta}{2} &=\, 0 \\ \frac{l\,\cos \theta\,\left(Q-P-\frac{l\,k\,\sin \theta}{2}\right)\,\delta \theta}{2} &=\, 0 \\ \end{split} \end{equation*}\]

  • Since we know that \(\delta \theta\) is arbitrary: \[\begin{equation*} \frac{l\,\cos \theta\,\left(Q-P-\frac{l\,k\,\sin \theta}{2}\right)}{2}=0 \end{equation*}\]

  • Now linearize the problem with the small angle assumptions: \[\begin{align} \sin \theta =& \; \theta \\ \cos \theta =& \; 1\\ \end{align}\]

    \[\begin{equation*} \frac{l\,\left(Q-P-\frac{l\,k\,\theta}{2}\right)}{2}=0 \end{equation*}\]

  • We can now solve the problem for \(\theta\): \[\begin{equation*} \theta=\frac{2\,\left(Q-P\right)}{l\,k} \end{equation*}\]

Sanity checks?

Deformable body

Principle of Virtual Work for Deformable Bodies

\[\begin{equation*} \delta W = \delta W_e + \delta W_i = 0 \end{equation*}\]

  • Where:
    • \(\delta W_i =\) virtual work of internal forces
      • \(\delta W_i = - \displaystyle\int_V {\left[\displaystyle\sum_i \displaystyle\sum_j {\sigma_{ij}}\cdot \delta {\varepsilon_{ij}}\right]\;} dV\)
      • \(i,j = x,y,z\)
    • \(\delta W_e =\) virtual work of external forces, including body forces
  • Notes:
    • Reactions at restrained supports do not do work.
    • The principle is not limited to any constitutive equation.

Minimum potential energy

This is related to the principle of virtual work.

Principle of minimum total potential energy

\[\begin{equation*} \delta V + \delta U = 0 = \delta (V + U) \end{equation*}\]

  • Total potential energy \(= U + V = \Pi\) \[\begin{align} \delta \Pi =&\; 0 \\ \Pi =&\; \Pi (q_1, q_2, ..., q_i, ..., q_n ) \\ \end{align}\] where \(q_i\) are independent DOFs

  • \[\begin{align} \delta \Pi =& {\frac{\partial \Pi}{\partial q_1}} \delta q_1 + {\frac{\partial \Pi}{\partial q_2}} \delta q_2 + ... \\ \delta \Pi =& \displaystyle\sum_{i=1}^n {\frac{\partial \Pi}{\partial q_i}} \delta q_i = 0 \\ \end{align}\]

  • Since \(\delta q_i\) are virtual displacements, or arbitrary kinematically admissible displacements: \[\begin{equation*} {\frac{\partial \Pi}{\partial q_i}} \delta q_i = 0 \end{equation*}\]

  • Of all the kinematically admissible displacements, those corresponding to a stable equilibrium position make \(\Pi\) a minimum. (Each and every \(q_i\) must minimize the energy.)

  • Therefore: \[\begin{equation*} {\frac{\partial \Pi}{\partial q_i}} \delta q_i = 0 \end{equation*}\]

Deformable body example

Deformable body virtual work example

  • Given: \[\begin{equation*} E_1 = E_2 = E \end{equation*}\]

\[\begin{equation*} 4A_1 = A_2 = 4 A \end{equation*}\]

  • Required: \(u_D\)

Solution:

  • The DOFs are the displacements \(u_D\) , \(u_C\) and \(u_B (=0)\)
  • Write strains first in terms of DOFs: \[\begin{equation*} {\varepsilon}_1 = \frac{(u_C - u_B)}{2l} = \frac{u_C}{2l} \end{equation*}\] \[\begin{equation*} {\varepsilon}_2 = \frac{(u_D - u_C)}{l} \end{equation*}\]
  • Then strain energy: \[\begin{equation*} U_i = {\frac{1}{2}}\sigma_i \cdot {\varepsilon}_i \cdot A_i L_i = {\frac{1}{2}}(E_i \cdot {\varepsilon}_i) \cdot {\varepsilon}_i \cdot A_i L_i = {\frac{1}{2}}({\varepsilon}_i^2 \cdot E_i \cdot A_i L_i) \end{equation*}\] \[\begin{equation*} U = U_1 + U_2 = {\frac{1}{2}}({\varepsilon}_1^2 \cdot E_1 \cdot A_1 L_1) + {\frac{1}{2}}({\varepsilon}_2^2 \cdot E_2 \cdot A_2 L_2) \end{equation*}\] \[\begin{equation*} = {\frac{1}{2}}\left(\frac{u_C}{2l}\right)^2 EA \cdot 2l + {\frac{1}{2}}\left(\frac{u_D - u_C}{l} \right)^2 4 EA \cdot l \end{equation*}\]
  • Therefore: \[\begin{equation*} U = (u_C)^2 \cdot \frac{EA}{4l} + (u_D - u_C)^2 \cdot \frac{2EA}{l} \end{equation*}\]
  • Also, the external work: \[\begin{equation*} V = - P u_D \end{equation*}\]
  • The energy: \[\begin{equation*} \Pi=U+V \end{equation*}\]
  • Thus: \[\begin{equation*} {\frac{\partial \Pi}{\partial u_C}} = 0 \end{equation*}\] \[\begin{equation*} 2 u_C \cdot \frac{EA}{4l} + 2 (u_D - u_C) \cdot (-1) \cdot \frac{2 EA}{l} = 0 \end{equation*}\] \[\begin{equation*} {\frac{\partial \Pi}{\partial u_D}} = 0 \end{equation*}\] \[\begin{equation*} 2 (u_D - u_C) \cdot \frac{2 EA}{l} - P = 0 \end{equation*}\]
  • By adding both equations: \[\begin{equation*} 2 u_C \cdot \frac{EA}{4 l} - P = 0 \end{equation*}\] \[\begin{equation*} u_C = P \cdot \frac{2l}{EA} = P \cdot \frac{2L}{3 EA} \end{equation*}\] \[\begin{equation*} 2 (u_D - u_C) \cdot \frac{2EA}{l} = P \end{equation*}\]
  • Therefore: \[\begin{equation*} u_D = u_C + P \frac{l}{4 EA} \end{equation*}\] \[\begin{equation*} u_D = \left(P \frac{l}{EA}\right) \cdot (2 + \frac{1}{4}) = 9P \frac{l}{4 EA} = 3P \frac{L}{4 EA} = u_D \end{equation*}\]
  • Therefore: \[\begin{equation*} u_D= 3P \frac{L}{4 EA} \end{equation*}\]