The content of this section was delivered over several lectures:
Assumptions:
We have deduced an equilibrium equation for shear flow:
The axial stress is: \[\begin{align} \sum F_z =& 0 \\ \Delta {\sigma_{zz}}\cdot \Delta s \cdot t + \Delta q \cdot \Delta z =& \; 0\\ \frac{\Delta {\sigma_{zz}}}{\Delta z} \cdot t + \frac{\Delta q}{\Delta s} =& \; 0\\ \end{align}\]
Therefore the shear flow and axial stress are related through: \[\begin{equation}{\frac{\partial q}{\partial s}} = -t {\frac{\partial {\sigma_{zz}}}{\partial z}}\end{equation}\]
Importantly, this implies that if there are no resulting bending moments and no resulting shear loads (ie pure torsion), we know that the value of \(q\) is constant.
\[\begin{equation}\sum F_z = 0 \Longrightarrow \tau_{sz2} \cdot t_2 \cdot \Delta z = \tau_{sz1} \cdot t_1 \cdot \Delta z\end{equation}\]
\[\begin{equation}\tau_{sz2} \cdot t_2 = \tau_{sz1} \cdot t_1 =\tau_{zs}(s) \cdot t\end{equation}\] Define \(q\) as the shear flow. \(\tau_{zs}(s) \cdot t =q\)
The shear flow (\(q\)) is constant along the wall of a cross-section of a monocoque beam under pure torsion
\[\begin{equation}\displaystyle \sum F_z = 0 \rightarrow \tau_{sz2} \cdot t_2 \cdot \Delta z = \tau_{sz1} \cdot t_1 \cdot \Delta z\end{equation}\] \[\begin{equation}\tau_{sz2} \cdot t_2 = \tau_{sz1} \cdot t_1 = \tau_{sz} \cdot t = q = \text{shear flow}\end{equation}\]
The shear flow (\(q\)) is constant along the wall of a cross-section of a monocoque beam under pure torsion
Recall: \[\begin{equation}\tau_{sz} \cdot t = q\end{equation}\]
Thus: \[\begin{equation}\tau_{sz} = \frac{T}{(2A \cdot t)}\end{equation}\] \[\begin{equation}\gamma_{sz} = \frac{\tau_{sz}}{G} = \frac{T}{(2G \cdot A \cdot t)} = \frac{q}{(G \cdot t)}\end{equation}\]
Shear strain depends on shear flow, the modulus, and \(t\)!
Not constants but a function of \(s\).
Recall the definition of strain, now related in our tangent-normal-z coordinate system: \[\begin{equation}\gamma_{sz} = \frac{\partial u_s}{\partial z} + \frac{\partial w}{\partial s}\end{equation}\]
\(u_s\) is the displacement along the arc-length direction. Warping is small, thus: \[\begin{equation}\frac{\partial w}{\partial s} \approx 0\end{equation}\]
The two arc-lengths are the same, thus:
\[\begin{equation}\gamma_{sz} \cdot \Delta z = \Delta \alpha \cdot r\end{equation}\]
\[\begin{equation}\frac{\Delta \alpha}{\Delta z} = \frac{\gamma_{sz}}{r}\end{equation}\]
\[\begin{equation}\theta \equiv \lim_{\Delta \rightarrow 0} \frac{\Delta \alpha}{\Delta z} = \frac{\gamma_{sz}}{r}\end{equation}\]
Recall by prior geometric argument: \[\begin{equation}2A = \oint r \times ds\end{equation}\]
Thus: \[\begin{equation}2A = \oint \frac{\gamma_{sz}}{\theta} ds\end{equation}\]
and:
\[\begin{equation} \theta = \oint \frac{\gamma_{sz} ds}{(2A)} \end{equation}\]
There are other ways to write equivalent mathematical statements:
Recall also that: \(\gamma_{sz} = \frac{q}{(G \cdot t)}\)
Substitute into @ref(eq:thisone) and pull out the constants:
Leading to: \[\begin{equation}\theta = ({\frac{1}{2}}\frac{q}{A}) \oint \left(G \cdot t\right)^{-1} ds\end{equation}\]
Recall also the constant shear flow is: \[\begin{equation}q = {\frac{1}{2}}\frac{T}{A}\end{equation}\]
Where \(A\) = enclosed cell area (average)
\[\begin{equation}\theta = \frac{T}{(4 A^2)} \oint \left(G \cdot t\right)^{-1} ds\end{equation}\]
\[\begin{equation}b=d\end{equation}\]
\[\begin{equation}A^{\mathrm{sq}}\left(d\right)=d^{2}\end{equation}\] \[\begin{equation}A^{\mathrm{cir}}\left(d\right)=\frac{d^{2} \,\pi}{4}\end{equation}\] \[\begin{equation}\theta=\frac{T \oint{\frac{1}{t\left(s\right) \,G\left(s\right)}\;ds}}{4 \,{A_{\mathrm{Enc}}}^{2}}\end{equation}\]
\[\begin{equation}GJ_{\mathrm{ef}}^{\mathrm{sq}}=\frac{T}{\theta}=d^{3} \,t \,G\end{equation}\] \[\begin{equation}GJ_{\mathrm{ef}}^{\mathrm{cir}}=\frac{T}{\theta}=\frac{d^{3} \,\pi \,t \,G}{4}\end{equation}\]
\[\begin{equation}\frac{GJ_{\mathrm{ef}}^{\mathrm{sq}}}{GJ_{\mathrm{ef}}^{\mathrm{cir}}}=\frac{4}{\pi} = 1.27\end{equation}\]
\[\begin{equation}b \neq d\end{equation}\]
\[\begin{equation}A_{\mathrm{sec}}^{\mathrm{sq}}\left(b\right)=4 \,b \,t\end{equation}\] \[\begin{equation}A_{\mathrm{sec}}^{\mathrm{cir}}\left(d\right)=d \,\pi \,t\end{equation}\]
Equate the cross sectional areas \[\begin{equation}4 \,b \,t=d \,\pi \,t\end{equation}\]
Solve for the dimension of the square \[\begin{equation}b=\frac{d \,\pi}{4}\end{equation}\]
Now what are the enclosed areas? \[\begin{equation}A^{\mathrm{sq}}=\frac{d^{2} \,\pi^{2}}{16}\end{equation}\] \[\begin{equation}A^{\mathrm{cir}}=\frac{d^{2} \,\pi}{4}\end{equation}\]
\[\begin{equation}GJ_{\mathrm{ef}}^{\mathrm{sq}}=\frac{T}{\theta}=\frac{d^{3} \,\pi^{4} \,t \,G}{256}\end{equation}\] \[\begin{equation}GJ_{\mathrm{ef}}^{\mathrm{cir}}=\frac{T}{\theta}=\frac{d^{3} \,\pi \,t \,G}{4}\end{equation}\]
\[\begin{equation}\frac{GJ_{\mathrm{ef}}^{\mathrm{sq}}}{GJ_{\mathrm{ef}}^{\mathrm{cir}}}=\left(\frac{\pi^{3}}{64}\right)\end{equation}\] \[\begin{equation}\frac{GJ_{\mathrm{ef}}^{\mathrm{sq}}}{GJ_{\mathrm{ef}}^{\mathrm{cir}}}=0.484\end{equation}\]
Solution:
For the overall length \(L=100\) in:
the total twist angle \(\alpha = \theta \cdot L = 6.593 \times 10^{-3}\) rad
\(GJ = \frac{T}{\theta} = \frac{2 \times 10^4}{6.593 \times 10^{-5}} = 303.352 \times 10^6\) \[lb \cdot in^2/rad\]
\[\begin{equation}{\tau_{yz}}=0\end{equation}\]
\[\begin{equation}{\frac{\partial \phi}{\partial x}} = -{\tau_{yz}}= 0\end{equation}\]
Recall compatibility equation for the Prandtl stress function: \[\begin{align} {\frac{\partial^2 \phi}{\partial x \partial x}} + {\frac{\partial^2 \phi}{\partial y \partial y}} =& - 2 G \theta \\ {\frac{\partial^2 \phi}{\partial y \partial y}} =& - 2 G \theta \\ \end{align}\]
Therefore: \[\begin{equation}\phi = -G \theta y^2 + C_1 y + C_2\end{equation}\]
Boundary conditions at \(y=\pm\frac{t}{2}\): \[\begin{equation}\phi = 0\end{equation}\]
Therefore: \[\begin{align} C_1 =& \, 0 \\ C_2 =& \, G \theta \frac{t^2}{4} \\ \end{align}\]
Therefore: \[\begin{equation}\phi = -G \theta \left(y^2 - \frac{t^2}{4} \right)\end{equation}\]
The shear stress is therefore: \[\begin{align} {\tau_{xz}}= \; {\frac{\partial \phi}{\partial y}} \\ {\tau_{xz}}= \; -2 G \theta y \\ \end{align}\]
The shear stress is parallel to the surface of the thin member and varies linearly across it’s cross section. \[\begin{equation}T=2 \iint \phi dA\end{equation}\] \[\begin{equation}T=-2 G \theta \int_{-b/2}^{b/2} \int_{-t/2}^{t/2} \left(y^2 - \frac{t^2}{4} \right) dx \, dy\end{equation}\] \[\begin{equation}T=\frac{b t^3}{3} G \theta\end{equation}\]
Recall the torsion differential equation: \[\begin{equation}T= G J\theta\end{equation}\]
\[\begin{equation}J= \frac{b t^3}{3}\end{equation}\] What is the big deal?
\[\begin{equation}GJ_{\mathrm{open}} = G \frac{b t^3}{3} = G \frac{\pi d t^3}{3}\end{equation}\] \[\begin{equation}GJ_{\mathrm{ef}}^{\mathrm{cir}}=G \frac{\pi d^{3} \,t}{4}\end{equation}\]
Assume: \[\begin{equation}t=1.0\end{equation}\] \[\begin{equation}d=10.0\end{equation}\]
\[\begin{equation}J_{\mathrm{open}} = 10.4\end{equation}\] \[\begin{equation}J_{\mathrm{ef}}^{\mathrm{cir}}= 78.5\end{equation}\]
The ratio is: \[\begin{align} \frac{J_{\mathrm{ef}}^{\mathrm{cir}}}{J_{\mathrm{open}}} =\frac{3}{4} \left(\frac{d}{t}\right)^2=75.0 \end{align}\]
We see how crucial the shear transfer is to resisting torsion.
Recall that shear flow requires a shear stress field that can be assumed constant through the thickness. Clearly, shear flow theory cannot be used for torsion of a thin walled section.
\[\begin{equation}\theta = \frac{T \oint{\frac{1}{t\left(s\right) \,G\left(s\right)}\;ds}}{4 \,{A_{\mathrm{Enc}}}^{2}}\end{equation}\]
\[\begin{equation}GJ_{\mathrm{ef}}^{\mathrm{sq}}=\frac{T}{\theta}=d^{3} \,t \,G\end{equation}\] \[\begin{equation}GJ_{\mathrm{ef}}^{\mathrm{cir}}=\frac{T}{\theta}=\frac{d^{3} \,\pi \,t \,G}{4}\end{equation}\]
\[\begin{align} \sum F_z =& \, 0 \\ q_1 dz + q_2 dz + q_{12} dz =& \, 0 \\ q_1 + q_2 + q_{12} =& \, 0 \\ \end{align}\]
At the junction: \[\begin{equation}\displaystyle \sum q_i = 0\end{equation}\]
The solution is:
Note: When one cell is open is it likely negigible!
Hence, set \(q=0\).