Lets think again about the stress potato:
Unknown | Quantity |
---|---|
Displacements | 3 |
Stresses | 9 (6 unique) |
Strains | 6 |
Total | 18 (15 unique) |
What strains do you expect for \({\sigma_{xx}}\ne 0\) (all others stresses = 0)?
For \({\sigma_{yy}}\ne 0\), all others 0? \[\begin{align} {\varepsilon_{yy}}=& \frac{{\sigma_{yy}}}{E} \cr {\varepsilon_{xx}}=& -\nu \frac{{\sigma_{yy}}}{E} \cr {\varepsilon_{zz}}=& -\nu \frac{{\sigma_{yy}}}{E} \cr {\varepsilon_{ij}}=& \; 0 \hspace{5mm} \mbox{ for } i\neq j \cr \end{align}\]
For \({\sigma_{zz}}\ne 0\), all others 0? \[\begin{align} {\varepsilon_{zz}}=& \, \frac{{\sigma_{zz}}}{E} \cr {\varepsilon_{xx}}=& \, -\nu \frac{{\sigma_{zz}}}{E} \cr {\varepsilon_{yy}}=& \, -\nu \frac{{\sigma_{zz}}}{E} \cr {\varepsilon_{ij}}=& \, 0 \hspace{5mm} \mbox{ for } i\neq j \cr \end{align}\]
For \({\tau_{xy}}\ne 0\), all others 0? \[\begin{align} {\gamma_{xy}}=& \, \frac{{\tau_{xy}}}{G} \cr {\gamma_{xz}}=& \, 0 \cr {\gamma_{yz}}=& \, 0 \cr {\varepsilon_{ii}}=& \, 0 \hspace{5mm} \mathrm{No \; sum} \cr \end{align}\]
For \({\tau_{xz}}\ne 0\), all others 0? \[\begin{align} {\gamma_{xz}}=& \, \frac{{\tau_{xz}}}{G} \cr {\gamma_{xy}}=& \, 0 \cr {\gamma_{yz}}=& \, 0 \cr {\varepsilon_{ii}}=& \, 0 \hspace{5mm} \mathrm{No \; sum} \cr \end{align}\]
For \({\tau_{yz}}\ne 0\), all others 0? \[\begin{align} {\gamma_{yz}}=& \, \frac{{\tau_{yz}}}{G} \cr {\gamma_{xy}}=& \, 0 \cr {\gamma_{xz}}=& \, 0 \cr {\varepsilon_{ii}}=& \, 0 \hspace{5mm} \mathrm{No \; sum} \cr \end{align}\]
For multiple simultaneous stresses: use superposition
Fibrous composites exhibit a more complex constitutive response
Consider the following material description: \[\begin{equation*} \left\{ \begin{array}{c} {\varepsilon_{xx}}\cr {\varepsilon_{yy}}\cr {\varepsilon_{zz}}\cr {\gamma_{yz}}\cr {\gamma_{xz}}\cr {\gamma_{xy}}\cr \end{array} \right\} = \left[ \begin{array}{cccccc} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \cr S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \cr S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \cr S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \cr S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \cr S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} \cr \end{array} \right] \left\{ \begin{array}{c} {\sigma_{xx}}\cr {\sigma_{yy}}\cr {\sigma_{zz}}\cr {\sigma_{yz}}\cr {\sigma_{xz}}\cr {\sigma_{xy}}\cr \end{array} \right\} \end{equation*}\] This is generalized Hooke’s law (applicable to any linear elastic material–called anisotropic).
Note the use of engineering shear strain in this matrix to allow the symmetry of the tensorial elastic compliance matrix to be appreciated in the 6x6 compliance matrix.
\[\begin{equation*} \left\{ \begin{array}{c} {\varepsilon_{xx}}\cr {\varepsilon_{yy}}\cr {\varepsilon_{zz}}\cr {\varepsilon_{yz}}\cr {\varepsilon_{xz}}\cr {\varepsilon_{xy}}\cr \end{array} \right\} = \left[ \begin{array}{cccccc} \frac{1}{E} & \frac{-\nu}{E} & \frac{-\nu}{E} & 0 & 0 & 0 \cr \frac{-\nu}{E} & \frac{1}{E} & \frac{-\nu}{E} & 0 & 0 & 0 \cr \frac{-\nu}{E} & \frac{-\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \cr 0 & 0 & 0 & \frac{1}{2 G} & 0 & 0 \cr 0 & 0 & 0 & 0 & \frac{1}{2 G} & 0 \cr 0 & 0 & 0 & 0 & 0 & \frac{1}{2 G} \cr \end{array} \right] \left\{ \begin{array}{c} {\sigma_{xx}}\cr {\sigma_{yy}}\cr {\sigma_{zz}}\cr {\sigma_{yz}}\cr {\sigma_{xz}}\cr {\sigma_{xy}}\cr \end{array} \right\} \end{equation*}\]
\[\begin{align} \{{\varepsilon}\} =& [S] \{\sigma\} \cr \{\sigma\} =& [S]^-1 \{{\varepsilon}\} \cr \{\sigma\} =& [C] \{{\varepsilon}\} \cr \end{align}\]
\[\begin{equation*} \left\{ \begin{array}{c} {\sigma_{xx}}\cr {\sigma_{yy}}\cr {\sigma_{zz}}\cr {\sigma_{yz}}\cr {\sigma_{xz}}\cr {\sigma_{xy}}\cr \end{array} \right\} = \left[ \begin{array}{cccccc} 2 \mu + \lambda & \lambda & \lambda & 0 & 0 & 0 \cr \lambda & 2 \mu + \lambda & \lambda & 0 & 0 & 0 \cr \lambda & \lambda &2 \mu + \lambda & 0 & 0 & 0 \cr 0 & 0 & 0 & 2 \mu & 0 & 0 \cr 0 & 0 & 0 & 0 & 2 \mu & 0 \cr 0 & 0 & 0 & 0 & 0 & 2 \mu \cr \end{array} \right] \left\{ \begin{array}{c} {\varepsilon_{xx}}\cr {\varepsilon_{yy}}\cr {\varepsilon_{zz}}\cr {\varepsilon_{yz}}\cr {\varepsilon_{xz}}\cr {\varepsilon_{xy}}\cr \end{array} \right\} \end{equation*}\]
Where: \[\begin{align} \mu =& \frac{E}{2 (1-\nu)} \cr \lambda =& \frac{\nu E}{(1+\nu)(1-2 \nu)} \cr \end{align}\]
Note also: the shear modulus
\[\begin{equation*} G = \frac{E}{2 (1+\nu)} \end{equation*}\]
Due to symmetry: \[\begin{align} \frac{\nu_{yx}}{E_{yy}} =& \frac{\nu_{xy}}{E_{xx}} \cr \frac{\nu_{zx}}{E_{zz}} =& \frac{\nu_{xz}}{E_{xx}} \cr \frac{\nu_{zy}}{E_{zz}} =& \frac{\nu_{yz}}{E_{yy}} \cr \end{align}\]
This is often the best description of a composite ply.
Finally, this entire description is referred to as “generalized Hooke’s law” (Robert Hooke, Late 17th century)
\[\begin{equation*} {\sigma_{ij}}= E_{ijkl} \, \varepsilon_{kl} \end{equation*}\]
Law | Quantity |
---|---|
Linear momentum (equilibrium) | 3 |
Angular momentum (equilibrium) | (3) |
Constitutive law (\(\sigma\)-\({\varepsilon}\)) | 6 |
Kinematics (\({\varepsilon}\)-displacement | 6 |
Total | 18 (15) |
When a body is predominately loaded in two directions and unloaded in the third, a plane stress assumption can be made.
The result is a simplified set of governing constitutive equations: \[\begin{equation*} \left\{ \begin{array}{c} {\varepsilon_{xx}}\cr {\varepsilon_{yy}}\cr {\varepsilon_{xy}}\cr \end{array} \right\} = \left[ \begin{array}{ccc} \frac{1}{E} & \frac{-\nu}{E} & 0 \cr \frac{-\nu}{E} & \frac{1}{E} & 0 \cr 0 & 0 & \frac{1}{2 G} \cr \end{array} \right] \left\{ \begin{array}{c} {\sigma_{xx}}\cr {\sigma_{yy}}\cr {\sigma_{xy}}\cr \end{array} \right\} \end{equation*}\]
\[\begin{equation*} \left\{ \begin{array}{c} {\sigma_{xx}}\cr {\sigma_{yy}}\cr {\sigma_{xy}}\cr \end{array} \right\} = \left[ \begin{array}{ccc} \frac{E}{1-\nu^2} & \frac{\nu E}{1-\nu^2} & 0 \cr \frac{\nu E}{1-\nu^2} & \frac{E}{1-\nu^2} & 0 \cr 0 & 0 & {2 G} \cr \end{array} \right] \left\{ \begin{array}{c} {\varepsilon_{xx}}\cr {\varepsilon_{yy}}\cr {\varepsilon_{xy}}\cr \end{array} \right\} \end{equation*}\]
\[\begin{equation*} \left\{ \begin{array}{c} {\sigma_{xx}}\cr {\sigma_{yy}}\cr {\sigma_{zz}}\cr {\sigma_{yz}}\cr {\sigma_{xz}}\cr {\sigma_{xy}}\cr \end{array} \right\} = \frac{E}{(1+\nu)(1-2\nu)} \left[ \begin{array}{cccccc} 1-\nu & \nu & \nu & 0 & 0 & 0 \cr \nu & 1-\nu & \nu & 0 & 0 & 0 \cr \nu & \nu & 1-\nu & 0 & 0 & 0 \cr 0 & 0 & 0 & 1-2\nu & 0 & 0 \cr 0 & 0 & 0 & 0 & 1-2\nu & 0 \cr 0 & 0 & 0 & 0 & 0 & 1-2\nu \cr \end{array} \right] \left\{ \begin{array}{c} {\varepsilon_{xx}}\cr {\varepsilon_{yy}}\cr 0 \cr 0 \cr 0 \cr {\varepsilon_{xy}}\cr \end{array} \right\} \end{equation*}\]
\[\begin{equation*} \left\{ \begin{array}{c} {\sigma_{xx}}\cr {\sigma_{yy}}\cr {\sigma_{xy}}\cr \end{array} \right\} = \frac{E}{(1+\nu)(1-2\nu)} \left[ \begin{array}{cccccc} 1-\nu & \nu & 0 \cr \nu & 1-\nu & 0 \cr 0 & 0 & 1-2\nu \cr \end{array} \right] \left\{ \begin{array}{c} {\varepsilon_{xx}}\cr {\varepsilon_{yy}}\cr {\varepsilon_{xy}}\cr \end{array} \right\} \end{equation*}\]
\[\begin{equation*} \left\{ \begin{array}{c} {\varepsilon_{xx}}\cr {\varepsilon_{yy}}\cr {\varepsilon_{xy}}\cr \end{array} \right\} = \frac{1+\nu}{E} \left[ \begin{array}{cccccc} 1-\nu & -\nu & 0 \cr -\nu & 1-\nu & 0 \cr 0 & 0 & 1 \cr \end{array} \right] \left\{ \begin{array}{c} {\sigma_{xx}}\cr {\sigma_{yy}}\cr {\sigma_{xy}}\cr \end{array} \right\} \end{equation*}\]
So far in this class we have developed a method to solve a boundary value problem of linear elasticity.
We must do all of the following: