In an introduction to engineering course, the following description of strain was likely presented:
\[\begin{equation} {\varepsilon}= \lim_{L \rightarrow 0} \frac{\Delta L}{L} \end{equation}\]
Strain is derived from deformation. Therefore we must take a closer look at deformation in order to fully understand strain.
Examine a deformation vector in a body under strain.
In this derivation, the vector is assumed to be originally aligned with the \(x\) direction, and the normal strain (\({\varepsilon_{xx}}\)) is computed.
(This assumption is not necessary, however it simplifies the calculation.)
Assume the following: \[\begin{equation} \begin{split} {\varepsilon_{xx}}=& \lim_{OA \rightarrow 0} \frac{(O'A')^2-(OA)^2}{2 (OA)^2} \\ =& \lim_{OA \rightarrow 0} \left(\frac{1}{2}\right)\left[ \frac{(O'A')^2}{(OA)^2} -1 \right] \end{split} \end{equation}\]
It is noteworthy that we are looking a quadratic equation with respect to vector length, i.e., this definition examines a higher order strain equation than the linear strain encountered in many undergraduate textbooks.
\[\begin{equation} \begin{split} OA =& \, {\delta x}{\vec{i}}+ 0 {\vec{j}}+ 0 {\vec{k}}\\ OO' =& \, u {\vec{i}}+ v {\vec{j}}+ w {\vec{k}}\\ AA' =& \, (u + {\delta u}) {\vec{i}}+ (v +{\delta v}) {\vec{j}}+ (w +{\delta w}) {\vec{k}}\\ \end{split} \end{equation}\]
\[\begin{equation} \begin{split} OA' =& \, OA + AA' \\ =& \, OO' + O'A' \\ \end{split} \end{equation}\]
\[\begin{equation} \begin{split} O'A' =& \, OA+AA'-OO' \\ \end{split} \end{equation}\]
\[\begin{equation} \begin{split} O'A' =& [{\delta x}{\vec{i}}] + [(u + {\delta u}){\vec{i}}+ (v+{\delta v}){\vec{j}}+(w+{\delta w}){\vec{k}}] - [u {\vec{i}}+ v {\vec{j}}+w {\vec{k}}]\\ =& ({\delta x}+{\delta u}) {\vec{i}}+ {\delta v}{\vec{j}}+ {\delta w}{\vec{k}}\\ (O'A')^2 =& ({\delta x}+{\delta u})^2 + {\delta v}^2 + {\delta w}^2 \\ =& {\delta x}^2 +2 {\delta x}{\delta u}+ {\delta u}^2 + {\delta v}^2 + {\delta w}^2 \\ \end{split} \end{equation}\]
\[\begin{equation} \begin{split} \frac{(O'A')^2}{(OA)^2}=& 1 +2 \frac{{\delta u}}{{\delta x}} + \left(\frac{{\delta u}}{{\delta x}}\right)^2 + \left(\frac{{\delta v}}{{\delta x}}\right)^2 + \left(\frac{{\delta w}}{{\delta x}}\right)^2 \end{split} \end{equation}\]
\[\begin{equation} \begin{split} \frac{(O'A')^2}{(OA)^2}-1 =& 2 \frac{{\delta u}}{{\delta x}} + \left[\left(\frac{{\delta u}}{{\delta x}}\right)^2 + \left(\frac{{\delta v}}{{\delta x}}\right)^2 + \left(\frac{{\delta w}}{{\delta x}}\right)^2 \right] \end{split} \end{equation}\]
Recall our quadratic definition of strain.
\[\begin{equation} \begin{split} {\varepsilon_{xx}}=& \lim_{OA \rightarrow 0} \left(\frac{1}{2}\right)\left[ \frac{(O'A')^2}{(OA)^2} -1 \right] \\ \end{split} \end{equation}\]
Therefore: \[\begin{equation} \begin{split} {\varepsilon_{xx}}=& {\frac{\partial u}{\partial x}} + \frac{1}{2} \left[\left({\frac{\partial u}{\partial x}}\right)^2 + \left({\frac{\partial v}{\partial x}}\right)^2 + \left({\frac{\partial w}{\partial x}}\right)^2 \right]\\ \approx & {\frac{\partial u}{\partial x}} \end{split} \end{equation}\]
Similarly, we can derive:
\[\begin{equation} \begin{split} {\varepsilon_{yy}}=& {\frac{\partial v}{\partial y}} + \frac{1}{2} \left[\left({\frac{\partial u}{\partial y}}\right)^2 + \left({\frac{\partial v}{\partial y}}\right)^2 + \left({\frac{\partial w}{\partial y}}\right)^2 \right]\\ \approx & {\frac{\partial v}{\partial y}} \end{split} \end{equation}\]
\[\begin{equation} \begin{split} {\varepsilon_{zz}}=& {\frac{\partial w}{\partial z}} + \frac{1}{2} \left[\left({\frac{\partial u}{\partial z}}\right)^2 + \left({\frac{\partial v}{\partial z}}\right)^2 + \left({\frac{\partial w}{\partial z}}\right)^2 \right]\\ \approx & {\frac{\partial w}{\partial z}} \end{split} \end{equation}\]
\[\begin{equation} \angle BOA = 90 {^\circ} \end{equation}\]
We will define the shear strain as: \[\begin{equation} {\gamma_{xy}}= 90 {^\circ}- \angle B'O'A' \end{equation}\]
Manipulating our definition of \({\gamma_{xy}}\): \[\begin{equation} \begin{split} \sin {\gamma_{xy}}=& \sin \left(90 {^\circ}- \angle B'O'A' \right) \\ =& \cos \left( \angle B'O'A' \right) \end{split} \end{equation}\]
Separately, we can take the scalar product of the two vectors: \[\begin{equation} \begin{split} \vec{O'B'} \cdot \vec{O'A'} =& ||O'B'|| \; ||O'A'|| \cos \left(\angle B'O'A'\right) \\ \cos \left(\angle B'O'A'\right) =& \frac{\vec{O'B'} \cdot \vec{O'A'}}{||O'B'|| \; ||O'A'||} \\ \end{split} \end{equation}\]
Therefore, we have: \[\begin{equation} \sin {\gamma_{xy}}= \frac{\vec{O'B'} \cdot \vec{O'A'}}{||O'B'|| \; ||O'A'||} \end{equation}\]
\[\begin{equation} \vec{O'B'} \cdot \vec{O'A'} = ({\delta x}+ {\delta u}) {\delta u}+ ({\delta y}+ {\delta v}) {\delta v}+ {\delta w}{\delta w} \end{equation}\]
Therefore:
\[\begin{equation} \begin{split} \sin {\gamma_{xy}}=& \, \frac{({\delta x}+ {\delta u}) {\delta u}+ ({\delta y}+ {\delta v}) {\delta v}+ {\delta w}{\delta w}}{{\delta x}{\delta y}} \\ =& \, (1 + {u {}_{,x}}){u {}_{,y}} + (1 + {v {}_{,y}}){v {}_{,x}} + {w {}_{,x}} {w {}_{,y}}\\ =& \, {u {}_{,y}} + {v {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \\ \end{split} \end{equation}\]
Finally, we can also know that for small shear angles:
\[\begin{equation} \sin {\gamma_{xy}}\approx {\gamma_{xy}} \end{equation}\]
Therefore: \[\begin{equation} {\gamma_{xy}}= {u {}_{,y}} + {v {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \end{equation}\]
\[\begin{equation} \begin{split} {\varepsilon_{xx}}=& {u {}_{,x}} + \frac{1}{2} \left[\left({u {}_{,x}}\right)^2 + \left({v {}_{,x}}\right)^2 + \left({w {}_{,x}}\right)^2 \right]\\ {\varepsilon_{yy}}=& {v {}_{,y}} + \frac{1}{2} \left[\left({u {}_{,y}}\right)^2 + \left({v {}_{,y}}\right)^2 + \left({w {}_{,y}}\right)^2 \right]\\ {\varepsilon_{zz}}=& {w {}_{,z}} + \frac{1}{2} \left[\left({u {}_{,z}}\right)^2 + \left({v {}_{,z}}\right)^2 + \left({w {}_{,z}}\right)^2 \right]\\ {\gamma_{xy}}=& {u {}_{,y}} + {v {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}}\\ {\gamma_{xz}}=& {u {}_{,z}} + {w {}_{,x}} + {u {}_{,x}} {u {}_{,z}} + {v {}_{,x}} {v {}_{,z}} + {w {}_{,x}} {w {}_{,z}}\\ {\gamma_{yz}}=& {v {}_{,z}} + {w {}_{,y}} + {u {}_{,y}} {u {}_{,z}} + {v {}_{,y}} {v {}_{,z}} + {w {}_{,y}} {w {}_{,z}}\\ \end{split} \end{equation}\]
Lets compare the following equations: \[\begin{equation} \begin{split} {\varepsilon_{xx}}=& {u {}_{,x}} + \frac{1}{2} \left( ({u {}_{,x}})^2 + ({v {}_{,x}})^2 + ({w {}_{,x}})^2 \right) \\ {\gamma_{xy}}=& {u {}_{,y}} + {v {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \\ \end{split} \end{equation}\]
\[\begin{equation} \begin{split} 2 \, {\varepsilon_{xx}}=&{u {}_{,x}} + {u {}_{,x}} + {u {}_{,x}} {u {}_{,x}} + {v {}_{,x}} {v {}_{,x}} + {w {}_{,x}} {w {}_{,x}} \\ {\gamma_{xy}}= 2 \, {\varepsilon_{xy}}=&{u {}_{,y}} + {v {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \end{split} \end{equation}\]
From the above equations we observe: \[\begin{equation} {\varepsilon_{xy}}= \frac{1}{2} {\gamma_{xy}} \end{equation}\]
Similarly: \[\begin{equation} \begin{split} {\gamma_{xy}}= 2 \, {\varepsilon_{xy}}=&{u {}_{,z}} + {w {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \\ {\gamma_{xz}}= 2 \, {\varepsilon_{xz}}=&{u {}_{,z}} + {w {}_{,x}} + {u {}_{,x}} {u {}_{,z}} + {v {}_{,x}} {v {}_{,z}} + {w {}_{,x}} {w {}_{,z}} \\ {\gamma_{yz}}= 2 \, {\varepsilon_{yz}}=&{v {}_{,z}} + {w {}_{,y}} + {u {}_{,y}} {u {}_{,z}} + {v {}_{,y}} {v {}_{,z}} + {w {}_{,y}} {w {}_{,z}} \end{split} \end{equation}\]
\[\begin{equation} \begin{split} {\varepsilon_{xx}}=& {u {}_{,x}} + \frac{1}{2} \left[({u {}_{,x}})^2 + ({v {}_{,x}})^2 + ({w {}_{,x}})^2 \right]\\ {\varepsilon_{yy}}=& {v {}_{,y}} + \frac{1}{2} \left[({u {}_{,y}})^2 + ({v {}_{,y}})^2 + ({w {}_{,y}})^2 \right]\\ {\varepsilon_{zz}}=& {w {}_{,z}} + \frac{1}{2} \left[({u {}_{,z}})^2 + ({v {}_{,z}})^2 + ({w {}_{,z}})^2 \right]\\ {\varepsilon_{xy}}=& \frac{1}{2} \left({u {}_{,y}} + {v {}_{,x}}\right) + \frac{1}{2} \left[{u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \right]\\ {\varepsilon_{xz}}=& \frac{1}{2} \left({u {}_{,z}} + {w {}_{,x}}\right) + \frac{1}{2} \left[{u {}_{,x}} {u {}_{,z}} + {v {}_{,x}} {v {}_{,z}} + {w {}_{,x}} {w {}_{,z}} \right]\\ {\varepsilon_{yz}}=& \frac{1}{2} \left({v {}_{,z}} + {w {}_{,y}}\right) + \frac{1}{2} \left[{u {}_{,y}} {u {}_{,z}} + {v {}_{,y}} {v {}_{,z}} + {w {}_{,y}} {w {}_{,z}} \right]\\ \end{split} \end{equation}\]
\[ \left[ \begin{array}{ccc} {\varepsilon_{xx}}- {\varepsilon_{\mathrm{P}}}& {\varepsilon_{xy}}& {\varepsilon_{xz}}\\ {\varepsilon_{xy}}& {\varepsilon_{yy}}- {\varepsilon_{\mathrm{P}}}& {\varepsilon_{yz}}\\ {\varepsilon_{xz}}& {\varepsilon_{yz}}& {\varepsilon_{zz}}- {\varepsilon_{\mathrm{P}}}\\ \end{array} \right] \left\{ \begin{array}{c} l \\ m \\ n \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\} \]
Note that there are only 3 displacements, but 6 strains.
Consider first 2D. We have 2 displacements and 3 strains. \[\begin{equation} \begin{split} {\varepsilon_{xx}}= \frac{\partial u}{\partial x} \\ {\varepsilon_{yy}}= \frac{\partial v}{\partial y} \\ 2 {\varepsilon_{xy}}= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\ \end{split} \end{equation}\]
Thus: \[\begin{equation} \begin{split} \frac{2 \, \partial^2 {\varepsilon_{xy}}}{\partial y \partial x} = \frac{\partial {\varepsilon_{xx}}}{\partial y^2} + \frac{\partial {\varepsilon_{yy}}}{\partial x^2} \\ \end{split} \end{equation}\]