AE4630 - Aerospace Structural Design:
Lecture 7

Displacement and Strain

Brief announcements

  • I reviewed due dates on e-learning
    • Moved the final to its appropriate time 12/17 12:30PM
    • Moved the project back two days to 12/10 2:30PM
  • Grader has completed the homework
  • Last homework assignment will be optional (practice only, solutions immediately available). Fair game on the exam.
  • Don’t forget about the limited number of licenses for software!
  • Please fill out the course evaluations!
  • Please let me know how the online version of the course went… better, worse, both?

Strain

  • The concept of stress was examined in chapter @ref(stress).
  • We have not yet discussed displacement, nor the relationship between stress and displacement.
  • Therefore, we next examine the concepts of deformation, displacement, and strain in three dimensions.

Small deformation definition of strain

In an introduction to engineering course, the following description of strain was likely presented:

\[\begin{equation} {\varepsilon}= \lim_{L \rightarrow 0} \frac{\Delta L}{L} \end{equation}\]

  • However, this equation is a linear approximation, is one dimensional, and makes a critical assumption of small strains.
  • Hence it is inadequate for some important material we will cover this semester.

Normal strain for larger deformations

Strain is derived from deformation. Therefore we must take a closer look at deformation in order to fully understand strain.

Examine a deformation vector in a body under strain.

Vector in a body

Vector in a body

In this derivation, the vector is assumed to be originally aligned with the \(x\) direction, and the normal strain (\({\varepsilon_{xx}}\)) is computed.

(This assumption is not necessary, however it simplifies the calculation.)

Vector in a body

Assume the following: \[\begin{equation} \begin{split} {\varepsilon_{xx}}=& \lim_{OA \rightarrow 0} \frac{(O'A')^2-(OA)^2}{2 (OA)^2} \\ =& \lim_{OA \rightarrow 0} \left(\frac{1}{2}\right)\left[ \frac{(O'A')^2}{(OA)^2} -1 \right] \end{split} \end{equation}\]

It is noteworthy that we are looking a quadratic equation with respect to vector length, i.e., this definition examines a higher order strain equation than the linear strain encountered in many undergraduate textbooks.

  • Examine the displacement vector:

Vector in a body \[\begin{equation} \begin{split} OA =& \, {\delta x}{\vec{i}}+ 0 {\vec{j}}+ 0 {\vec{k}}\\ OO' =& \, u {\vec{i}}+ v {\vec{j}}+ w {\vec{k}}\\ AA' =& \, (u + {\delta u}) {\vec{i}}+ (v +{\delta v}) {\vec{j}}+ (w +{\delta w}) {\vec{k}}\\ \end{split} \end{equation}\]

\[\begin{equation} \begin{split} OA' =& \, OA + AA' \\ =& \, OO' + O'A' \\ \end{split} \end{equation}\]

\[\begin{equation} \begin{split} O'A' =& \, OA+AA'-OO' \\ \end{split} \end{equation}\]

\[\begin{equation} \begin{split} O'A' =& [{\delta x}{\vec{i}}] + [(u + {\delta u}){\vec{i}}+ (v+{\delta v}){\vec{j}}+(w+{\delta w}){\vec{k}}] - [u {\vec{i}}+ v {\vec{j}}+w {\vec{k}}]\\ =& ({\delta x}+{\delta u}) {\vec{i}}+ {\delta v}{\vec{j}}+ {\delta w}{\vec{k}}\\ (O'A')^2 =& ({\delta x}+{\delta u})^2 + {\delta v}^2 + {\delta w}^2 \\ =& {\delta x}^2 +2 {\delta x}{\delta u}+ {\delta u}^2 + {\delta v}^2 + {\delta w}^2 \\ \end{split} \end{equation}\]

\[\begin{equation} \begin{split} \frac{(O'A')^2}{(OA)^2}=& 1 +2 \frac{{\delta u}}{{\delta x}} + \left(\frac{{\delta u}}{{\delta x}}\right)^2 + \left(\frac{{\delta v}}{{\delta x}}\right)^2 + \left(\frac{{\delta w}}{{\delta x}}\right)^2 \end{split} \end{equation}\]

\[\begin{equation} \begin{split} \frac{(O'A')^2}{(OA)^2}-1 =& 2 \frac{{\delta u}}{{\delta x}} + \left[\left(\frac{{\delta u}}{{\delta x}}\right)^2 + \left(\frac{{\delta v}}{{\delta x}}\right)^2 + \left(\frac{{\delta w}}{{\delta x}}\right)^2 \right] \end{split} \end{equation}\]

Recall our quadratic definition of strain.

\[\begin{equation} \begin{split} {\varepsilon_{xx}}=& \lim_{OA \rightarrow 0} \left(\frac{1}{2}\right)\left[ \frac{(O'A')^2}{(OA)^2} -1 \right] \\ \end{split} \end{equation}\]

Therefore: \[\begin{equation} \begin{split} {\varepsilon_{xx}}=& {\frac{\partial u}{\partial x}} + \frac{1}{2} \left[\left({\frac{\partial u}{\partial x}}\right)^2 + \left({\frac{\partial v}{\partial x}}\right)^2 + \left({\frac{\partial w}{\partial x}}\right)^2 \right]\\ \approx & {\frac{\partial u}{\partial x}} \end{split} \end{equation}\]

Similarly, we can derive:

\[\begin{equation} \begin{split} {\varepsilon_{yy}}=& {\frac{\partial v}{\partial y}} + \frac{1}{2} \left[\left({\frac{\partial u}{\partial y}}\right)^2 + \left({\frac{\partial v}{\partial y}}\right)^2 + \left({\frac{\partial w}{\partial y}}\right)^2 \right]\\ \approx & {\frac{\partial v}{\partial y}} \end{split} \end{equation}\]

\[\begin{equation} \begin{split} {\varepsilon_{zz}}=& {\frac{\partial w}{\partial z}} + \frac{1}{2} \left[\left({\frac{\partial u}{\partial z}}\right)^2 + \left({\frac{\partial v}{\partial z}}\right)^2 + \left({\frac{\partial w}{\partial z}}\right)^2 \right]\\ \approx & {\frac{\partial w}{\partial z}} \end{split} \end{equation}\]

Definition of shear strain and its relation to linear strain

Shear strain for larger deformations

  • Examiner initial and final configuration for two vectors of a strained body. In the initial configuration, the angle defined is 90 degrees.

Vector in a body

\[\begin{equation} \angle BOA = 90 {^\circ} \end{equation}\]

We will define the shear strain as: \[\begin{equation} {\gamma_{xy}}= 90 {^\circ}- \angle B'O'A' \end{equation}\]

Manipulating our definition of \({\gamma_{xy}}\): \[\begin{equation} \begin{split} \sin {\gamma_{xy}}=& \sin \left(90 {^\circ}- \angle B'O'A' \right) \\ =& \cos \left( \angle B'O'A' \right) \end{split} \end{equation}\]

  • The latter of these two can be attributed to the phase angle between sine and cosine.
  • Separately, we can take the scalar product of the two vectors: \[\begin{equation} \begin{split} \vec{O'B'} \cdot \vec{O'A'} =& ||O'B'|| \; ||O'A'|| \cos \left(\angle B'O'A'\right) \\ \cos \left(\angle B'O'A'\right) =& \frac{\vec{O'B'} \cdot \vec{O'A'}}{||O'B'|| \; ||O'A'||} \\ \end{split} \end{equation}\]

  • Therefore, we have: \[\begin{equation} \sin {\gamma_{xy}}= \frac{\vec{O'B'} \cdot \vec{O'A'}}{||O'B'|| \; ||O'A'||} \end{equation}\]

  • We need calculate the scalar product: \[\begin{equation} \begin{split} \vec{O'A'} =& ({\delta x}+ {\delta u}) {\vec{i}}+ {\delta v}{\vec{j}}+ {\delta w}{\vec{k}}\\ \vec{O'B'} =& {\delta u}{\vec{i}}+ ({\delta y}+ {\delta v}) {\vec{j}}+ {\delta w}{\vec{k}}\\ \end{split} \end{equation}\]

\[\begin{equation} \vec{O'B'} \cdot \vec{O'A'} = ({\delta x}+ {\delta u}) {\delta u}+ ({\delta y}+ {\delta v}) {\delta v}+ {\delta w}{\delta w} \end{equation}\]

  • Now, for the purposes of the change in angle, we can assume that the length of the vectors does not change significantly. Therefore: \[\begin{equation} \begin{split} O'A' \approx& \; {\delta x}\\ O'B' \approx& \; {\delta y}\\ \end{split} \end{equation}\]

Therefore:

\[\begin{equation} \begin{split} \sin {\gamma_{xy}}=& \, \frac{({\delta x}+ {\delta u}) {\delta u}+ ({\delta y}+ {\delta v}) {\delta v}+ {\delta w}{\delta w}}{{\delta x}{\delta y}} \\ =& \, (1 + {u {}_{,x}}){u {}_{,y}} + (1 + {v {}_{,y}}){v {}_{,x}} + {w {}_{,x}} {w {}_{,y}}\\ =& \, {u {}_{,y}} + {v {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \\ \end{split} \end{equation}\]

Finally, we can also know that for small shear angles:

\[\begin{equation} \sin {\gamma_{xy}}\approx {\gamma_{xy}} \end{equation}\]

Therefore: \[\begin{equation} {\gamma_{xy}}= {u {}_{,y}} + {v {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \end{equation}\]

Summary of the engineering strain-deformation equations

\[\begin{equation} \begin{split} {\varepsilon_{xx}}=& {u {}_{,x}} + \frac{1}{2} \left[\left({u {}_{,x}}\right)^2 + \left({v {}_{,x}}\right)^2 + \left({w {}_{,x}}\right)^2 \right]\\ {\varepsilon_{yy}}=& {v {}_{,y}} + \frac{1}{2} \left[\left({u {}_{,y}}\right)^2 + \left({v {}_{,y}}\right)^2 + \left({w {}_{,y}}\right)^2 \right]\\ {\varepsilon_{zz}}=& {w {}_{,z}} + \frac{1}{2} \left[\left({u {}_{,z}}\right)^2 + \left({v {}_{,z}}\right)^2 + \left({w {}_{,z}}\right)^2 \right]\\ {\gamma_{xy}}=& {u {}_{,y}} + {v {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}}\\ {\gamma_{xz}}=& {u {}_{,z}} + {w {}_{,x}} + {u {}_{,x}} {u {}_{,z}} + {v {}_{,x}} {v {}_{,z}} + {w {}_{,x}} {w {}_{,z}}\\ {\gamma_{yz}}=& {v {}_{,z}} + {w {}_{,y}} + {u {}_{,y}} {u {}_{,z}} + {v {}_{,y}} {v {}_{,z}} + {w {}_{,y}} {w {}_{,z}}\\ \end{split} \end{equation}\]

Engineering strain vs tensor strain

Lets compare the following equations: \[\begin{equation} \begin{split} {\varepsilon_{xx}}=& {u {}_{,x}} + \frac{1}{2} \left( ({u {}_{,x}})^2 + ({v {}_{,x}})^2 + ({w {}_{,x}})^2 \right) \\ {\gamma_{xy}}=& {u {}_{,y}} + {v {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \\ \end{split} \end{equation}\]

\[\begin{equation} \begin{split} 2 \, {\varepsilon_{xx}}=&{u {}_{,x}} + {u {}_{,x}} + {u {}_{,x}} {u {}_{,x}} + {v {}_{,x}} {v {}_{,x}} + {w {}_{,x}} {w {}_{,x}} \\ {\gamma_{xy}}= 2 \, {\varepsilon_{xy}}=&{u {}_{,y}} + {v {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \end{split} \end{equation}\]

From the above equations we observe: \[\begin{equation} {\varepsilon_{xy}}= \frac{1}{2} {\gamma_{xy}} \end{equation}\]

Similarly: \[\begin{equation} \begin{split} {\gamma_{xy}}= 2 \, {\varepsilon_{xy}}=&{u {}_{,z}} + {w {}_{,x}} + {u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \\ {\gamma_{xz}}= 2 \, {\varepsilon_{xz}}=&{u {}_{,z}} + {w {}_{,x}} + {u {}_{,x}} {u {}_{,z}} + {v {}_{,x}} {v {}_{,z}} + {w {}_{,x}} {w {}_{,z}} \\ {\gamma_{yz}}= 2 \, {\varepsilon_{yz}}=&{v {}_{,z}} + {w {}_{,y}} + {u {}_{,y}} {u {}_{,z}} + {v {}_{,y}} {v {}_{,z}} + {w {}_{,y}} {w {}_{,z}} \end{split} \end{equation}\]

Summary of the tensor strain-deformation equations

\[\begin{equation} \begin{split} {\varepsilon_{xx}}=& {u {}_{,x}} + \frac{1}{2} \left[({u {}_{,x}})^2 + ({v {}_{,x}})^2 + ({w {}_{,x}})^2 \right]\\ {\varepsilon_{yy}}=& {v {}_{,y}} + \frac{1}{2} \left[({u {}_{,y}})^2 + ({v {}_{,y}})^2 + ({w {}_{,y}})^2 \right]\\ {\varepsilon_{zz}}=& {w {}_{,z}} + \frac{1}{2} \left[({u {}_{,z}})^2 + ({v {}_{,z}})^2 + ({w {}_{,z}})^2 \right]\\ {\varepsilon_{xy}}=& \frac{1}{2} \left({u {}_{,y}} + {v {}_{,x}}\right) + \frac{1}{2} \left[{u {}_{,x}} {u {}_{,y}} + {v {}_{,x}} {v {}_{,y}} + {w {}_{,x}} {w {}_{,y}} \right]\\ {\varepsilon_{xz}}=& \frac{1}{2} \left({u {}_{,z}} + {w {}_{,x}}\right) + \frac{1}{2} \left[{u {}_{,x}} {u {}_{,z}} + {v {}_{,x}} {v {}_{,z}} + {w {}_{,x}} {w {}_{,z}} \right]\\ {\varepsilon_{yz}}=& \frac{1}{2} \left({v {}_{,z}} + {w {}_{,y}}\right) + \frac{1}{2} \left[{u {}_{,y}} {u {}_{,z}} + {v {}_{,y}} {v {}_{,z}} + {w {}_{,y}} {w {}_{,z}} \right]\\ \end{split} \end{equation}\]

  • It is notable that these higher order strain equations are completely consistent with the linearized versions that are typically used in linear analysis.
    • There are many circumstances where the linear versions of these equations are perfectly adequate.
  • However, in some circumstances such as stability analysis or calculations where the deformations are relatively large, it will be necessary to carry the higher-order terms.

The principal strains

\[ \left[ \begin{array}{ccc} {\varepsilon_{xx}}- {\varepsilon_{\mathrm{P}}}& {\varepsilon_{xy}}& {\varepsilon_{xz}}\\ {\varepsilon_{xy}}& {\varepsilon_{yy}}- {\varepsilon_{\mathrm{P}}}& {\varepsilon_{yz}}\\ {\varepsilon_{xz}}& {\varepsilon_{yz}}& {\varepsilon_{zz}}- {\varepsilon_{\mathrm{P}}}\\ \end{array} \right] \left\{ \begin{array}{c} l \\ m \\ n \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\} \]

  • The strain tensor, like the stress tensor, has principal values and principal directions.
    • The computation is identical to the computation for stress.
    • The principal strains exist in a coordinate frame where the shear strain components are zero
  • It is notable that the principal stress and strain directions are not necessarily the same.
    • In general, they will be the same for linear elastic materials but may not be so for anisotropic materials.

Displacement Compatibility

Undeformed, compatible, and incompatible deformation

  • Displacements are not arbitrary, they must conform to certain limits.
  • For our purposes, we limit ourselves to recognizing that displacements must be single values functions. (Points A’ and B’ must be perfectly aligned under strain.)
  • This means that the displacement functions must be continuous within the body. There can be no cracks nor voids.
  • If cracks or void form, new boundary conditions exist and the elasticity problem must be reformulated accounting for the change.

Note that there are only 3 displacements, but 6 strains.

  • To get strain from displacement, we must differentiate. Differentiation loses information, so is not difficult to stomach
  • To get displacement from strain, we must integrate. While we could get 6 integration constants, we don’t have enough unique displacements to establish them. (Note, these are pointwise equations, so at any one point we do not have 6 displacements.
    • We are either overdetermined (not physically possible for a real system), or we have redundancy in the equations.
    • Consequently, there must be additional constraints on strain:

Compatibility relationships

Consider first 2D. We have 2 displacements and 3 strains. \[\begin{equation} \begin{split} {\varepsilon_{xx}}= \frac{\partial u}{\partial x} \\ {\varepsilon_{yy}}= \frac{\partial v}{\partial y} \\ 2 {\varepsilon_{xy}}= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\ \end{split} \end{equation}\]

  • Taking derivatives of the third equations (with respect to \(x\), then \(y\)): \[\begin{equation} \begin{split} \frac{2 \, \partial {\varepsilon_{xy}}}{\partial x} = \frac{\partial}{\partial x} \frac{\partial u}{\partial y} + \frac{\partial}{\partial x} \frac{\partial v}{\partial x} \\ \frac{2 \, \partial^2 {\varepsilon_{xy}}}{\partial x \partial y} = \frac{\partial^2 \partial u}{\partial y^2 \partial x} + \frac{\partial^2 \partial v}{\partial x^2 \partial y} \\ \end{split} \end{equation}\]

Thus: \[\begin{equation} \begin{split} \frac{2 \, \partial^2 {\varepsilon_{xy}}}{\partial y \partial x} = \frac{\partial {\varepsilon_{xx}}}{\partial y^2} + \frac{\partial {\varepsilon_{yy}}}{\partial x^2} \\ \end{split} \end{equation}\]

  • This establishes a relationship between the three equations such that they are not independent.