AE4630 - Aerospace Structural Design:
Lecture 6

Development of the Stress Equilibrium Equations

Brief announcements

  • I reviewed due dates on e-learning
    • Moved the final to its appropriate time 12/17 12:30PM
    • Moved the project back two days to 12/10 2:30PM
  • Grader has completed the homework
  • Last homework assignment will be optional (practice only, solutions immediately available). Fair game on the exam.
  • Don’t forget about the limited number of licenses for software!
  • Please fill out the course evaluations!
  • Please let me know how the online version of the course went… better, worse, both?

Equations of motion: equilibrium and stress

2D conservation of linear momentum (translational equilibrium equations)

Equilibrium parallelepiped - a differential volume element

\[\begin{align} \sum F_x &= \; m a_x \\ \end{align}\]

\[\begin{align} \delta y \left({{\sigma_{xx}}(x+\delta x,y)}-{{\sigma_{xx}}(x,y)}\right) &\\ + \delta x \left({\tau_{yx} (x,y+\delta y)}-{{\tau_{yx}}(x,y)}\right) &\\ + \delta x \delta y \; b_x &= \delta x \delta y \; \rho \, a_x\\ \end{align}\]

\[\begin{align} \frac{{{\sigma_{xx}}(x+\delta x,y)}-{{\sigma_{xx}}(x,y)}}{\delta x} + \frac{{\tau_{yx} (x,y+\delta y)}-{{\tau_{yx}}(x,y)}}{\delta y} + b_x &= \rho \, a_x\\ \end{align}\]

\[\begin{align} {\frac{\partial {{\sigma_{xx}}(x,y)}}{\partial x}}+ {\frac{\partial {{\tau_{yx}}(x,y)}}{\partial y}}+b_x &= \rho \, a_x\\ \end{align}\]

Similarly after summing the forces in \(y\): \[\begin{align} {\frac{\partial {{\sigma_{yy}}(x,y)}}{\partial y}}+ {\frac{\partial {{\tau_{xy}}(x,y)}}{\partial x}}+ b_y &= \rho \, a_y\\ \end{align}\]

Generalizing: the stress equilibrium equations are: \[\begin{align} {{\sigma_{xx}} {}_{,x}} + {{\sigma_{yx}} {}_{,y}} + {{\sigma_{zx}} {}_{,z}} + b_x = \rho \, a_x\\ {{\sigma_{xy}} {}_{,x}} + {{\sigma_{yy}} {}_{,y}} + {{\sigma_{zy}} {}_{,z}} + b_y = \rho \, a_y\\ {{\sigma_{xz}} {}_{,x}} + {{\sigma_{yz}} {}_{,y}} + {{\sigma_{zz}} {}_{,z}} + b_z = \rho \, a_z\\ \end{align}\]

The form of the equations of motion depend on the coordinate system used.

2D moment equilibrium equations (conservation of angular momentum)

For an infinitesimal body:

\[\sum M_{C z} = I_M \ddot{\theta}\]

  • (neglect inertia for brevity)

\[\begin{align} \frac{\delta x}{2} \delta y \left[{\tau_{xy} (x+\delta x,y)}+ {{\tau_{xy}}(x,y)}\right] &\\ - \frac{\delta y}{2} \delta x \left[{\tau_{yx} (x,y+\delta y)}+ {{\tau_{yx}}(x,y)}\right] &= 0 \\ \end{align}\]

\[\begin{align} \left[{\tau_{xy} (x+\delta x,y)}+ {{\tau_{xy}}(x,y)}\right] & \\ - \left[{\tau_{yx} (x,y+\delta y)}+{{\tau_{yx}}(x,y)}\right] &= 0 \\ \end{align}\]

\[\begin{align} \left[{\tau_{xy} (x+\delta x,y)}+ {{\tau_{xy}}(x,y)}\right] &= \left[{\tau_{yx} (x,y+\delta y)}+{{\tau_{yx}}(x,y)}\right] \\ \end{align}\]

\[\begin{align} \lim_{\delta x, \delta y \rightarrow 0} & \\ \end{align}\]

\[\begin{align} 2 \, {\tau_{xy}}&= 2 \, {\tau_{yx}}\\ \end{align}\]

Conclusion: the stress tensor is symmetric

\[\begin{align} {\tau_{xy}}&= {\tau_{yx}}\\ {\tau_{xz}}&= {\tau_{zx}}\\ {\tau_{yz}}&= {\tau_{zy}}\\ \end{align}\]

\[\left[\sigma\right] = \left[ \begin{array}{ccc} {\sigma_{xx}}& {\sigma_{xy}}& {\sigma_{xz}}\\ {\sigma_{xy}}& {\sigma_{yy}}& {\sigma_{yz}}\\ {\sigma_{xz}}& {\sigma_{yz}}& {\sigma_{zz}}\\ \end{array} \right]\]

There are only 6 unique components in a stress tensor.

Conclusion

Close examination of these equations illustrates that the normal stress and shear stress are coupled together.

Lap joint. Shear and normal stress are coupled. As the axial stress decreases along one leg of the joint, the load is passed into the adhesive via shear load transfer. It is subsequently transferred across the adhesive and is transferred via shear again to become axial stress in the other leg of the joint. A further observation is that the changing shear stress also requires a changing normal stress in the perpendicular direction. Hence a high concentration of peel stress exists where axial stress is changing.

Additional discussion about the coupling:

Equilibrium in cylindrical coordinates

By similar arguments, equilibrium in cylindrical coordinates (\(r, \theta, z\)) requires:

\[\begin{align} {\frac{\partial {\sigma_{rr}}}{\partial r}} + \frac{1}{r}{\frac{\partial {\sigma_{r\theta}}}{\partial \theta}} + {\frac{\partial {\sigma_{rz}}}{\partial z}} + \frac{{\sigma_{rr}}-{\sigma_{\theta\theta}}}{r} + b_r =& \; \rho \; a_r\\ {\frac{\partial {\sigma_{r\theta}}}{\partial r}} + \frac{1}{r}{\frac{\partial {\sigma_{\theta\theta}}}{\partial \theta}} + {\frac{\partial {\sigma_{\theta z}}}{\partial z}} + \frac{2 \, {\sigma_{r\theta}}}{r} + b_\theta =& \; \rho \; a_\theta\\ {\frac{\partial {\sigma_{rz}}}{\partial r}} + \frac{1}{r}{\frac{\partial {\sigma_{\theta z}}}{\partial \theta}} + {\frac{\partial {\sigma_{zz}}}{\partial z}} + \frac{{\sigma_{rz}}}{r} + b_z =& \; \rho \; a_z\\ \end{align}\]

Equilibrium in spherical coordinates

In spherical coordinates (\(r, \theta, \phi\)), equilibrium requires:

\[\begin{align} {\frac{\partial {\sigma_{rr}}}{\partial r}} + \frac{1}{r} {\frac{\partial {\sigma_{\theta r}}}{\partial \theta}} + \frac{1}{r \sin \theta} {\frac{\partial {\sigma_{\phi r}}}{\partial \phi}} + \frac{1}{r} \left[ 2 \, {\sigma_{rr}}- {\sigma_{\phi\phi}}- {\sigma_{\theta\theta}}- {\sigma_{r\theta}}\cot \theta \right] + b_r =& \; \rho \; a_r\\ {\frac{\partial {\sigma_{r\theta}}}{\partial r}} + \frac{1}{r} {\frac{\partial {\sigma_{\theta\theta}}}{\partial \theta}} + \frac{1}{r \sin \theta} {\frac{\partial {\sigma_{\phi \theta}}}{\partial \phi}} + \frac{1}{r} \left[ ({\sigma_{\theta\theta}}-{\sigma_{\phi\phi}}) \cot \theta + 3 {\sigma_{r\theta}} \right] + b_{\theta} =& \; \rho \; a_{\theta}\\ {\frac{\partial {\sigma_{r\phi}}}{\partial r}} + \frac{1}{r} {\frac{\partial {\sigma_{\theta \phi}}}{\partial \theta}} + \frac{1}{r \sin \theta} {\frac{\partial {\sigma_{\phi\phi}}}{\partial \phi}} + \frac{1}{r} \left[ 3 {\sigma_{r\phi}}+ 2 \, {\sigma_{\theta \phi}}\cot \theta \right] + b_{\phi} =& \; \rho \; a_{\phi}\\ \end{align}\]