\[\begin{align} {\vec{S}}=& \; 0 \\ {\vec{T}_n}=& \; {\vec{N}}+ {\vec{S}}\\ {\vec{T}_n}=& \; {\vec{N}}\\ {\vec{T}_n}=& \; |{\vec{T}_n}| \, {\vec{n}}\\ {\vec{T}_n}=& \; {\sigma_{\mathrm{P}}}\, {\vec{n}}\\ \end{align}\]
We call \(\sigma_P\) the principal stress and the orientation (\({\vec{n}}\)) the principal orientation or principal axis
Recall the relationship between the stress tensor and the traction vector: \[\begin{align} [\sigma] \cdot {\vec{n}}= {\vec{T}_n}\\ [\sigma] \cdot {\vec{n}}= {\sigma_{\mathrm{P}}}\, {\vec{n}}\\ [\sigma] \cdot {\vec{n}}- {\sigma_{\mathrm{P}}}\, {\vec{n}}= \vec{0}\\ \left([\sigma] - {\sigma_{\mathrm{P}}}[I]\right) \cdot {\vec{n}}= \vec{0}\\ \end{align}\]
Do you recognize this class of problem?
By more than coincidence, this is the very definition of an eigenvalue problem with representing the eigenvalues of \([\sigma]\):
\[\left[ \begin{array}{ccc} {\sigma_{xx}}- {\sigma_{\mathrm{P}}}& {\sigma_{xy}}& {\sigma_{xz}}\\ {\sigma_{xy}}& {\sigma_{yy}}- {\sigma_{\mathrm{P}}}& {\sigma_{yz}}\\ {\sigma_{xz}}& {\sigma_{yz}}& {\sigma_{zz}}- {\sigma_{\mathrm{P}}}\\ \end{array} \right] \left\{ \begin{array}{c} l \\ m \\ n \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\]
Non-trivial solutions can be obtained by setting the determinant to zero. \[\det \left([\sigma] - {\sigma_{\mathrm{P}}}[I]\right) = 0\]
The principal orientation vectors are normalized to have unit length and are the eigenvectors of the stress tensor.
Note: The maximum shear stress is on an octahedral plane (The planes that bisect the principal planes) and be computed from the difference of the maximum principal stresses. (Mohr’s Circle)
\[\tau_{\mathrm{Max}} = \frac{1}{2}(\sigma_1 - \sigma_3 )\]
Given a stress state: \[[\sigma]= \left[ \begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right]\]
Find the principal stresses, principal directions, and maximum shear stress:
Solution
Invariants and principal stresses
First, find the invariants of the tensor: \[\begin{align} I_1 =& 3 \\ I_2 =& (1) (1) + (1) (1) + (1) (1) - (1^2 + 0^2 + 0^2) = 2 \\ I_3 =& \det [\sigma] = (1) (1-0) - (1) (1-0)+ (0) (0-0) =0 \\ \end{align}\]
Then put them into the equation and solve: \[{\sigma_{\mathrm{P}}}^3-3 {\sigma_{\mathrm{P}}}^2+2 {\sigma_{\mathrm{P}}}+ 0 =0\]
\[{\sigma_{\mathrm{P}}}= 2, 1, 0\]
Solution
First principal direction
The directions are important; find them. \[\left[ \begin{array}{ccc} 1 -2 & 1 & 0 \\ 1 & 1 -2 & 0 \\ 0 & 0 & 1 -2\\ \end{array} \right] \left\{ \begin{array}{c} l_1 \\ m_1 \\ n_1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\] \[\left[ \begin{array}{ccc} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \\ \end{array} \right] \left\{ \begin{array}{c} l_1 \\ m_1 \\ n_1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\]
Inspection of equation 3: \[\begin{align} -n_1 = 0 \\ \end{align}\]
Now equation 1: \[\begin{align} -l_1 + m_1 = 0 \\ l_1 = m_1 \\ \end{align}\]
Magnitudes need be unitized, therefore:
\[\begin{align} l_1^2 + l_1^2 + 0 = 1\\ 2 l_1^2 = 1\\ l_1 = \sqrt{\frac{1}{2}}\\ \vec{n}_1 = \sqrt{\frac{1}{2}} \left[ \begin{array}{c} 1 \\ 1 \\ 0 \\ \end{array} \right] \end{align}\]
Second principal direction
\[\left[ \begin{array}{ccc} 1 -1 & 1 & 0 \\ 1 & 1 -1 & 0 \\ 0 & 0 & 1 -1\\ \end{array} \right] \left\{ \begin{array}{c} l_2 \\ m_2 \\ n_2 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\] \[\left[ \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right] \left\{ \begin{array}{c} l_2 \\ m_2 \\ n_2 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\]
Inspection of equation 1 and 2: \[\begin{align} l_2 = 0 \\ m_2 = 0 \\ \end{align}\]
Magnitudes need be unitized, therefore:
\[\begin{align} n_2^2 = 1\\ \vec{n}_2 = \left[ \begin{array}{c} 0 \\ 0 \\ 1 \\ \end{array} \right] \end{align}\]
Third principal direction
\[\left[ \begin{array}{ccc} 1 -0 & 1 & 0 \\ 1 & 1 -0 & 0 \\ 0 & 0 & 1 -0 \\ \end{array} \right] \left\{ \begin{array}{c} l_3 \\ m_3 \\ n_3 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right\}\]
Inspection of equation 3: \[\begin{align} n_3 = 0 \\ \end{align}\]
Now equation 1: \[\begin{align} l_3 + m_3 = 0 \\ l_3 = -m_3 \\ \end{align}\]
Magnitudes need be unitized, therefore: \[\begin{align} l_3^2 + (-l_3)^2 + 0 = 1\\ 2 l_3^2 = 1\\ l_3 = \sqrt{\frac{1}{2}}\\ \vec{n}_3 = \sqrt{\frac{1}{2}} \left[ \begin{array}{c} 1 \\ -1 \\ 0 \\ \end{array} \right] \end{align}\]
In summary, the unit vectors are:
\[\sqrt{\frac{1}{2}} \left[ \begin{array}{ccc} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & \sqrt{2} & 0 \\ \end{array} \right]\]
Sanity check: We can check orthogonality:
\[\vec{n}_1 \times \vec{n}_2 = \vec{n}_3\]
\[\mathbf{a}\times\mathbf{b}= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{vmatrix} = \left| \begin{array}{ccc} {\vec{i}}& {\vec{j}}& {\vec{k}}\\ \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0 \\ 0 & 0 & 1 \\ \end{array} \right|\]
which is:
\[\vec{n}_3 = \frac{i}{\sqrt{2}}-\frac{j}{\sqrt{2}}\]